Home
Class 12
MATHS
If int0^ooe^(-ax)dx=1/a, then int0^oo(x^...

If `int_0^ooe^(-ax)dx=1/a`, then `int_0^oo(x^n)e^(-ax)dx` is

A

`((-1)^(n)n!)/(a^(n+1))`

B

`((-1)^(n)(n-1)!)/(a^(n))`

C

`(n!)/(a^(n+1))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(n)=int_(0)^(oo)x^(n)e^(-ax)dx`
`=[x^(n).(e^(-ax))/(-a)]_(0)^(oo)-int_(0)^(oo)nx^(n-1).(e^(-ax))/(-a)dx`
`=-(1)/(a)underset(xrarroo)(lim)(x^(n))/(e^(ax))+(n)/(a)I_(n-1)`
`I_(n)=(n)/(a)I_(n-1)" "[because underset(xrarroo)(lim)(x^(n))/(e^(ax))=0]`
`=(n)/(a).(n-1)/(a)I_(n-2)`
`=(n(n-1)(n-2))/(a^(3))I_(n-3)`
`=(n!)/(a^(n))int_(0)^(oo)e^(-ax)dx=(n!)/(a^(n))I_(0)=(n!)/(a^(n+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)e^(-x)dx

int_(0)^(1)e^(-x)dx

int_0^(100)e^(x-[x])dx=

int_(0)^(1)2e^(x)dx

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

Evaluate: int_(0)^(1)x^(2)e^(x)dx

Evaluate int_(0)^(2)e^(x)dx .

Evaluate int_(0)^(1)e^(2-3x)dx .

If int_(0)^(oo) (sinx)/x dx=(pi)/2, then int_(0)^(oo) (sin^(3)x)/x dx is equal to

int_(0)^(1)x(1-x)^(n)dx