Home
Class 12
MATHS
Let nge1, n in Z. The real number a in 0...

Let `nge1, n in Z`. The real number `a in 0,1` that minimizes the integral `int_(0)^(1)|x^(n)-a^(n)|dx` is

A

`(1)/(2)`

B

2

C

1

D

`(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I(a)=int_(0)^(1)|x^(n)-a^(n)|dx`
`therefore" "I_(a)=int_(0)^(a)(a^(n)-x^(n))dx+int_(a)^(1)(x^(n)-a^(n))dx=(2n)/(n+1).a^(n+1)-a^(n)+(1)/(n+1)`
`rArr" "(d)/(da)(I(a))=n(2a-1)a^(n-1)rArr " only critical point of in (0, 1) is a"in((1)/(2),1),I(a)" is minimum for a"=(1)/(2).`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x(1-x)^(n)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/x

Evaluate the definite integrals int_(0)^(1)(dx)/(1+x^(2))

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

int dx/(x^n(1+x^n)^(1/n)) is

If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -

int(dx)/(x(x^(n)+1))

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN