Home
Class 12
MATHS
Let f be a continuous function satisfyin...

Let f be a continuous function satisfying `f '(l n x)=[1` for `0< x<= 1, x` for `x > 1` and `f (0) = 0` then `f(x)` can be defined as

A

`f(x)={{:(1,if,xle1),(1-e^(x),if,xgt1):}`

B

`f(x)={{:(1,if,xle1),(e^(x)-1,if,xgt1):}`

C

`f(x)={{:(1,if,xlt1),(e^(x),if,xgt1):}`

D

`f(x)={{:(x,if,xle1),(e^(x)-1,if,xgt1):}`

Text Solution

Verified by Experts

The correct Answer is:
D

`f'(lnx)={{:(1,"for", 0ltxle1),(x,"for",xgt1):}`
Put log x = t
`rArr" "x=e^(t)`
For `x gt 1,f'(t)=e^(t),t gt0`
integrating `f(t)=e^(t)+C,`
`f(0)=e^(0)+c`
`rArr" "c=-1" (given f(0) = 0)"`
`therefore" "f(t)=e^(t)-1" for "tgt0" (corresponding to x gt 1)"`
Hence `f(x)=e^(x)-1" for "x gt 0" (1)"`
again for `0lt x le 1`
`f'(logx) = 1" "(x=e^(t))`
`f'(t)=1" for "t le0`
`f(t)=t+C`
`f(0)=0+C`
`rArr" C=0`
`rArr" "f(t)=t " for "t lt0`
`rArr" "f(x)=x" for "x le0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in R . If f(-3)=2 \ a n d \ f(5)=4 \ i n \ [-5,5], then the minimum number of roots of the equation f(x)=0 is

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in R . If f(-3)=2 \ a n d \ f(5)=4 \ i n \ [-5,5], then the minimum number of roots of the equation f(x)=0 is

Let f(x) be a continuous function in [-1, 1] and satisfies f(2x^2 - 1) = 2xf AA x in [-1, 1] . Prove that f(x) is identically zero for all x in [-1, 1]

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

Let f be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x^3phi(x) for all x and y when phi (x) is a continuous function then f''(x) is equal to

Let f : R rarr R be a continuous function which satisfies f(x) = int_0^x f(t) dt . Then the value of f(log_e 5) is

let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in[0,a] then int_0^a dx/(1+e^f(x) is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

If f is a real valued difrerentiable function satisfying | f (x) - f (y) | le (x -y) ^(2) for all, x,y in RR and f(0) =0, then f(1) is equal to-