Home
Class 12
MATHS
If f(x)=x+sinx, then int(pi)^(2pi)f^(-1)...

If `f(x)=x+sinx`, then `int_(pi)^(2pi)f^(-1)(x)dx` is equal to

A

`(3pi^(2))/(2)-2`

B

`(3pi^(2))/(2)+2`

C

`3pi^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Putting `x=f(t) rArr dx=f'(t)dt`
`I=int_(pi)^(2pi)t.f'(t)dt" "(becausef(pi)=pi andf(2pi)=2pi)`
`=|t.f(t)|_(pi)^(2pi)-int_(pi)^(2pi)1.f(t)dt`
`=2pif(2pi)-pif(pi)-|(t^(2))/(2)-cost|_(pi)^(2pi)`
`=4pi^(2)-pi^(2)-(1)/(2)(4pi^(2)-pi^(2))+(cos 2pi- cospi)=(3pi^(2))/(2)+2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx is equal to -

int_(-pi/2)^(pi/2) sinabs(x) dx is equal to

If f(x)=abs(sinx)+abs(cosx) ,then int_0^pi f(x) dx is equal to

If f(2a-x)=-f(x) then int_(0)^(2a)f(x)dx is equal to-

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

int (f'(x))/(f(x))dx is equal to-

If f(x)=f(a-x) then int_(0)^(a)xf(x)dx is equal to

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

If int_(0)^(oo) (sinx)/x dx=(pi)/2, then int_(0)^(oo) (sin^(3)x)/x dx is equal to

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to