Home
Class 12
MATHS
Given a real-valued function f which is ...

Given a real-valued function f which is monotonic and differentiable. Then `int_(f(a))^(f(b))2x(b-f^(-1)(x))dx=`

A

`int_(a)^(b)(f^(2)(x)-2f^(2)(a))dx`

B

`int_(a)^(b)(2f^(2)(x)-f^(2)(a))dx`

C

`int_(a)^(b)(f^(2)(x))dx-f^(2)(a)(b-a)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is monotonic differentiable function on [a , b] , then int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx= (a) bf(a)-af(b) (b) bf(b)-af(a) (c) f(a)+f(b) (d) cannot be found

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Let f: R → R be a one-one onto differentiable function, such that f(2)=1 and f^(prime)(2)=3. Then, find the value of (d/(dx)(f^(-1)(x)))_(x=1)

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n a) both f(x)a n dg(x) are odd functions b) f(x) is monotonic function c) f(x)=g(x) has no real roots d) int(f(x))/(g(x))dx=-1/x+3/(x^3)+c

Let f:[(1)/(2),1]to RR (the set of all real numbers) be a positive, non-constant and differentiable function such that f'(x)lt2f(x)" and "f((1)/(2))=1 Then the value of int_((1)/(2))^(1)f(x)dx lies in the interval

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

int_(a)^(b)(f(x)dx)/(f(x)+f(a+b-x))=(1)/(2)(b-a)

If f(x)is integrable function in the interval [-a,a] then show that int_(-a)^(a)f(x)dx=int_(0)^(a)[f(x)+f(-x)]dx.