Home
Class 12
MATHS
f(n)=int(0)^(oo)x^(n-1)e^(-x)dx...

`f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx`

A

`(f(n+1))/((m+1)^(n))`

B

`(f(n))/((m+1)^(n+1))`

C

`(f(n+1))/((m+1)^(n+1))`

D

`g(m+1),n+1)`

Text Solution

Verified by Experts

The correct Answer is:
C

Putting `log_(e)..(1)/(x)=t`
`rArr" "x=e^(-t)`
`rArr" "int_(0)^(1)x^(m)(log_(e)(1)/(x))^(n)dx`
`" "=int_(oo)^(0)e^(-mt)t^(n)(-e^(t))dt`
`" "=int_(0)^(oo)t^(n)e^(-(m+1))dt`
`" "=(1)/((m+1)^(n+1))int_(0)^(oo)t^(n)e^(-y)dy" (putting (m + 1) t = y)"`
`" "=(f(n+1))/((m+1)^(n+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)e^(-x)dx

int_(0)^(1)e^(-x)dx

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

int_(0)^(1)e^(2x)e^(e^(x) dx

int_(0)^(1)x(1-x)^(n)dx

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

int_(-oo)^(oo)(1)/(1+x^2) dx

int_(0)^(1)2e^(x)dx