Home
Class 12
MATHS
If a , b >0a n d0<p<1, then prove that (...

If `a , b >0a n d0

Text Solution

Verified by Experts

Let `f(x) =(1+x)^((p-1)-x^(p)),xgt0`
`therefore f(x)=p(1+x)^(p-1-px^(p-1))`
`=p[(1+x)^(p-1)-x^(p-1)]`
Now `1+xgt`
`(1+x)^(1-p)gtx^(1-p)`
`(1)/(1+x)^(p-1)gt(1)/(x^(p)-1)`
`(1+x^(p-1)ltx^(p-1))`
`(1+x)^(p-1)-x^(p-1)lt0`
From (1) and (2) we get f(x) `lt` 0
So f(x) is a decreasing function f
Now f(0) =0
`xgt0`
`f(x)ltf(0)`
`(1+x)^(p-1)-x^(p)lt0`
`(1+x)^(p)lt1+x^(p)`
Putting x=`(a)/(b)`. ,we get `(a+b)^(p)lta^(p)+b^(p)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If a , b > 0 a n d 0 < p < 1, then prove that (a+b)^p < a^p+b^pdot

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig a. c b. b c >0 c. a b >0 d. a b c<0

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

If the line a x+b y+c=0 is a normal to the curve x y=1, then (a) a >0,b >0 (b) a >0,b >0 (d) a 0

If an a triangle A B C , b=3 c, a n d C-B=90^0, then find the value of tanB

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

If roots of a x^2+b x+c=0 are alphaa n dbetaa n d4a+2b+c >0,4a -2b+c >0,a n dc<0, then possible values /values of [alpha]+[beta] is/are (where [.] represents greatest integer function) a. -2 b. -1 c. 0 d. 1

If a circle passes through the point (0,0),(a ,0)a n d(0, b) , then find its center.

Let a and b be two real numbers such that a > 1, b >1. If A=((a,0),(0,b)), then (lim)_(n->oo) A^-n is (a) unit matrix (b) null matrix (c) 2I (d) non of these

If alpha and beta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a) A_(n+1)=a A_n+b A_(n-1) b) A_(n+1)=b A_(n-1)+a A_n c) A_(n+1)=a A_n-b A_(n-1) d) A_(n+1)=b A_(n-1)-a A_n