Home
Class 12
MATHS
Prove that |cosalpha-cosbeta|lt=|alpha-b...

Prove that `|cosalpha-cosbeta|lt=|alpha-beta|`

Text Solution

Verified by Experts

`Let alphaltbeta`
We have to fprove that
`alpha-betalecos alpha-cos beta lebeta-alpha`
consider `alpha-betalecos alpha-cos beta`
`therefore cosbeta-beta le cos alpha-alpha`
`f(B)le f(alpha)`,wheref(x) =cosx-x
Now f(x) `=-sinx-1le0, forall` x in R
`f(x)` is decreasing function
`f(beta)lef(alpha)`
`cosbeta-betalecosalpha-alpha`
`alpha-beta le cos alpha-cos beta`
Now consider cos `alpha-cos beta le beta - alpha`
`alpha+cos alpha le beta +cos beta`
`g(alpha)le(beta)`,where g(x) = x+cosx
g(x) SI an increasing function.
`g(alpha)leg(beta)`
`[alpha+cos alpha le beta+cos beta]`
`cos alpha-cos beta le beta -alpha`
From (1) and (2) we get |cos `alpha-cos beta|le|alpha-beta|`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos (alpha+beta) +sin (alpha-beta)=2sin(pi/4+alpha)cos(pi/4+beta)

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2) .

If 0 lt alpha lt beta lt (pi)/(2) , prove that, tan alpha-tan beta lt alpha-beta .

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma) = 4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+beta)/2)

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

If tan(alpha/2)=sqrt((a-b)/(a+b)) tan(beta/2) prove that cosalpha=(acosbeta+b)/(a+bcosbeta)

Simplify (sinalpha+sinbeta)/(cosalpha-cosbeta)+(cosalpha+cosbeta)/(sinalpha-sinbeta)

If alpha+beta=(pi)/(2) , then prove that cosalpha=sqrt((sinalpha)/(cosbeta)-sinalphacosbeta)