Home
Class 12
MATHS
If P(1)=0a n d(d P(x))/(dx)>P(x) for all...

If `P(1)=0a n d(d P(x))/(dx)>P(x)` for all x>=1. Prove that P(x)>0 for all x>1

Text Solution

Verified by Experts

We are given the `(dp(x))/(dx)ltP(x),forallxle`1 and P(1)=0
`(dPO(x))/(dx)-P(x)gt0`
Multiplying both sides by `e^(-x)` we get
`e^(x)(dp(x))/(dx)-e^(-x)p(x)gt0`
`(d)/(dx)[e^(-x)p(x)]gt0`
`e^(-x)p(x)` is and increasing function.
`forall xgt1,e^(-x)gte^(-1)P(1)=0`
`e^(-x)P(x)gt0,forallxgt1`
`P(x)gt0, forall xgt1`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If P(1)=0a n d(d P(x))/(dx)gtP(x) , for all xge1 . Prove that P(x)>0 for all x>1.

f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,P_n be the polynomial such that (d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x) for all x > 0. Show that P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]

Let O be the origin. If A(1,0)a n dB(0,1)a n dP(x , y) are points such that x y >0a n dx+y<1, then P

Let f(x+p)=1+{2-3f(x)+3(f(x))^2-(f(x)^3}^(1//3), for all x in R where p>0 , then prove f(x) is periodic.

Let S denote the set of all polynomials P(x) of degree lt=2 such that P(1)=1,P(0)=0a n dP^(prime)(x)>0AAx in [0,1] , then (a)S=varphi (b)S={(1-a)x^2+a x ;0< a <2} (c)S={(1-a)x^2+a x ;0< a <1} (d)S={(1-a)x^2+a x ;0< a < oo}

If a, b, c are in G.P. and a^(1/x) =b^(1/y)=c^(1/z) , prove that x, y , x are in A.P

Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x epsilon[0,1],p(0)=1 and p(1)=41 . Then int_(0)^(1)p(x)dx is equals to (a) 42 (b) sqrt(41) (c) 21 (d) 41

If x ,1,a n dz are in A.P. and x ,2,a n dz are in G.P., then prove that x ,a n d4,z are in H.P.

The quadratic polynomial p(x) has the following properties: p(x)geq0 for all real numbers, p(1)=0 and p(2)=2 . Find the value of p(3) is__________.

If a , b > 0 a n d 0 < p < 1, then prove that (a+b)^p < a^p+b^pdot