Home
Class 12
MATHS
Prove that e^(x) ge 1 +x and hence e^(x)...

Prove that `e^(x) ge 1 +x` and hence `e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall` x in R

Text Solution

Verified by Experts

consider function `f(x) =e^(x)-1-x`
`f(x)=e^(x)-1`
for `xge0,f(x)ge0`
f(x) is increasing function for `xge0`
For `xge0,f(x)gef(0)`
or `e^(x)-1-xge0`
or `e^(x)1+x`
For `xlt0,f(x)lt0`
f(x) is decreasing function for `xlt0`
`e^(x)-1-xge0`
or `e^(x)ge1+x`
Thus `e^(x)1+xforall_(x)`in R.
Now we have to prove that
`e^(x)+sqrt(1+e^(2x))ge(1+x)+sqrt(1+(1+x)^(2))`
Thus for `xlt0,f(X)gt0`
Therefore f(x) is an increasing function
since `e^(x)gex+1`, we have
`f(e^(x))gef(x+1)`
or `e^(x)+sqrt(1+e^(2x))ge(1+x)+sqrt(1+(1+x)^(2)).forall`x in R
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

3(2-x)ge2(1-x)

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

Solve sqrt(x-2) ge -1.

int (e^(x)dx)/(sqrt(e^(2x)-a^(2)))

int (e^(x)dx)/(sqrt(e^(2x)-5e^(x)+6))

solve sqrt(x+2) ge x

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: inte^x/(sqrt(1-e^(2x)))dx

int (dx)/(sqrt(2e^(x)-1))=2 sec^(-1)(sqrt(2)e^((x)/(2)))+c

Evaluate: 1/(sqrt(1-e^(2x)))dx