Home
Class 12
MATHS
A function y=f(x) is given by x=1/(1+t^2...

A function `y=f(x)` is given by `x=1/(1+t^2)` and `y=1/(t(1+t^2))` for all `tgt0` then `f` is

Text Solution

Verified by Experts

The correct Answer is:
Increasing

`x=(1)/(1+t^(2)) and y=(1)/(t)(1+t^(2))`
`therefore (dx)/(dt)=-(2t)/(1+t^(2)(2)),(dy)/(dt) = (1+3t^(2))/(t^(2))(1+t^(2)2)`
`therefore (dy)/(dx)=(1+3t^(2))/(2t^(3))`
`(dy)/(dx)=(1+3t^(2))/(2t^(3))`
`(dy)/(dx)gt if tgt0 rarr x =(1)/(1+t^(2))in (0,1)`
Hence f(x) is an increasing funtion.
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Discuss monotonocity of y=f(x) which is griven by x=1/(1+t^2) and y=1/(t(1+t^2))

If a continous function f satisfies int_0^f(x) t^2 dt=x^2(1+x) for all xge0 then f(2) is equal to

Consider a function y = f(x) defined parametrically as y=2t+t, x=t^2 foralltin R then the function f(x) is

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

The function f(x) =int_0^xsqrt(1-t^4) dt is such that

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f:[1,oo) → [2, ∞) be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let, f:(0,oo)toR be given by f(x)=int_((1)/(x))^(x)e^(-(t+(1)/(t)))(dt)/(t) Then

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If y(t) is a solution of (1+t)dy/dt-t y=1 and y(0)=-1 then y(1) is