Home
Class 12
MATHS
Let g(x)=f(logx)+f(2-logx)a n df^(prime ...

Let `g(x)=f(logx)+f(2-logx)a n df^(prime prime)(x)<0AAx in (0,3)dot` Then find the interval in which `g(x)` increases.

Text Solution

Verified by Experts

The correct Answer is:
(0,e)

`g(x) =f(logx)+f(2-logx)`
`therefore g'(x) =[f(logx)-f'(2-logx)//x]`
g(x) increases if `g(x)gt0` Now `x gt0`
or `f(logx)-f(2-logx)gt0`
or `f(log x) gt f'(2-logx)`
or `log xlt2-logx[f''(x)lt0f,(x)]` is decreasing ]
or `log xlt 1`
or `0ltxlte`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Suppose that f(x) isa quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(prime prime)(x), then for any real x

Let f(x)a n dg(x) be two functions which are defined and differentiable for all xgeqx_0dot If f(x_0)=g(x_0)a n df^(prime)(x)>g^(prime)(x) for all x > x_0, then prove that f(x)>g(x) for all x > x_0dot

Suppose that f(x) is a quadratic expresson positive for all real x If g(x)=f(x)+f^(prime)(x)+f^(prime prime)(x), then for any real x (where f^(prime)(x) and f^(primeprime)(x) represent 1st and 2nd derivative, respectively). (a) g(x) 0 (c). g(x)=0 (d). g(x)geq0

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0) = 0,x in R , where f^(prime)(x) denotes (df(x))/(dx), and g(x) is a given non-constant differentiable function on R with g(0)=g(2)=0. Then the value of y(2) is______

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______