Home
Class 12
MATHS
Column I, Column II Range of f(x)=sin...

Column I, Column II Range of `f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)xi s` , p. `[0,pi/2]uu[pi/2,pi]` Range of `f(x)=` `cot^(-1)x+tan^(-1)x+cos e c^(-1)xi s` , q. `[pi/2,(3pi)/2]` Range of `f(x)=cot^(-1)x+tan^(-1)x+cos^(-1)xi s` , r. `[0,pi]` Range of `f(x)=` `sec^(-1)x+cos e c^(-1)x+sin^(-1)xi s` , s. `[(3pi)/4,(5pi)/4]`

Text Solution

Verified by Experts

The correct Answer is:
`[5-(5pi)/(4),9+(pi)/(4)]`

f(x)=`sin^(-1)x-cot ^(-1)x+x^(2)+2x+6`
Domain of the f(x) is [-1,1]
Now f'(x) =`(1)/sqrt(1-x^(2))+(1)/(1+x^(2))+2x+2`
For `x in [-1,1],2x+2gt0`
`therefore f(x)gt0`
So f(x) is an increasing funciton
`therefore f_(min)=f(-1) = (pi)/(2)-(3pi)/(4)+5=5-(5pi)/(4)`
`f_(max)=f(x1)=(pi)/(2)=(pi)/(4)+9=9+(pi)/(4)`
`therefore` Range is `[5-(5pi)/(4),9+(pi)/(4)]`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.4|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) = cos^(-1) x + cot^(-1) x

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

If |sin^(-1)x|+|cos^(-1)x|=pi/2,t hen

tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) (pi/4,(3pi)/4) (b) [pi/4,(3pi)/4] (c) {pi/4,(3pi)/4} (d) none of these

tan ^(-1) (cot x) + cot ^(-1) (tan x) =(pi)/(4)

cot ^(-1)""x+cot^(-1)""2x=(3pi)/(4)

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these