Home
Class 12
MATHS
Show that tan^(-1)x > x/(1+(x^2)/3)ifx i...

Show that `tan^(-1)x > x/(1+(x^2)/3)ifx in (0,oo)dot`

Text Solution

Verified by Experts

Let us assume f(x) =`tan^(-1)x-(3x)/(x^(2)+3)`
`therefore f(x)=(1)/(1+x^(32))-(3(x^(2)+3)-3x(2x))/(X^(2)+3)^(2)`
`=(4x^(4))/((1+x^(2))(x^(2)+33)^(2))gt forall x in (0,oo)`
Hence f(x) is increasing throughout
Also f(x)=0
Hence `f(X) gt0 forall x gt0`
or `tan^(-1)xgt(3x)/(3+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.4|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

show that, tan^(-1) ((1)/(sqrt(3)) tan ""(x)/(2))=(1)/(2) cos^(-1) ""((1+2 cos x)/(2+ cos x)).

show that 2 tan ^(-1) ((1+x)/(1-x)) - cos ^(-1)( (1-x^(2))/(1+x^(2)))=(pi)/(2)

Prove that: tan^(-1)x+tan^(-1)(1/x)={pi/2,ifx >0-pi/2,ifx<0

If xy = 1 + a^2 then show that, tan^(-1) [1/(a + x)]+tan^(-1) [1/(a+y)] = tan^(-1)[1/a],x + y + 2a ne 0 .

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

If xy=1 + a^(2) then show that tan^(-1) ""(1)/(a+x)+tan ^(-1) ""(1)/(a+y)=tan ^(-1)""(1)/(a) , x+y+2a ne 0