Home
Class 7
MATHS
If N=1/2+1/6+1/12+1/20+1/30+………+1/156 wh...

If `N=1/2+1/6+1/12+1/20+1/30+………+1/156` what is the value of N?

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( N \) given by the series \( N = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \ldots + \frac{1}{156} \), we can follow these steps: ### Step 1: Identify the Pattern The terms in the series can be expressed in a specific form: - \( \frac{1}{2} = \frac{1}{1 \cdot 2} \) - \( \frac{1}{6} = \frac{1}{2 \cdot 3} \) - \( \frac{1}{12} = \frac{1}{3 \cdot 4} \) - \( \frac{1}{20} = \frac{1}{4 \cdot 5} \) - \( \frac{1}{30} = \frac{1}{5 \cdot 6} \) Continuing this pattern, we can see that the general term can be written as: \[ \frac{1}{n(n+1)} \] where \( n \) starts from 1 and goes up to 12 (since \( \frac{1}{156} = \frac{1}{12 \cdot 13} \)). ### Step 2: Rewrite the Terms We can express each term \( \frac{1}{n(n+1)} \) using partial fractions: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Thus, the series can be rewritten as: \[ N = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{12} - \frac{1}{13} \right) \] ### Step 3: Simplify the Series When we add these terms together, we notice that most terms will cancel out: \[ N = 1 - \frac{1}{13} \] The remaining terms after cancellation are \( 1 \) from the first term and \( -\frac{1}{13} \) from the last term. ### Step 4: Calculate the Final Value Now we can compute the final value of \( N \): \[ N = 1 - \frac{1}{13} = \frac{13}{13} - \frac{1}{13} = \frac{12}{13} \] ### Conclusion Thus, the value of \( N \) is: \[ \boxed{\frac{12}{13}} \]
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -2|25 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos

Similar Questions

Explore conceptually related problems

If (n+1)! =12 xx [(n-1)!] , find the value of n.

If (n+1)! =12xx(n-1)! , find the value of n.

Simplify : 1/2 + 1/6 + 1/(12) + 1/(20)

If X = (a)/((1+r)) + (a)/((1+r)^2) + ….+ (a)/((1+r)^n) , then what is the value of a + a (1+ r) + ... + a (1 + r)^(n–1) ?

What is the sum of 1 1/2+4 1/6+7 1/12+10 1/20 .....up to 20 terms? 1 1/2+4 1/6+7 1/12+10 1/2 .....के 20 पदों तक का योग क्या है?

What is the value of (1/6) + (1/12) + (1/20)?

lim_(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6 , then find the value of k

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :