Home
Class 7
MATHS
The value of (0.44bar(67) +0.14 bar(44))...

The value of `(0.44bar(67) +0.14 bar(44))` is :

A

`0.59`

B

`0.59bar(12)`

C

`0.bar(59)`

D

`0.5bar(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (0.44\overline{67} + 0.14\overline{44}) \), we need to convert each repeating decimal into a fraction and then add them together. Let's go through the steps: ### Step 1: Convert \( 0.44\overline{67} \) to a fraction Let \( y = 0.44\overline{67} \). 1. **Multiply by 100** to shift the decimal point two places to the right: \[ 100y = 44.67676767\ldots \] 2. **Multiply by 10,000** to shift the decimal point four places to the right: \[ 10,000y = 4467.67676767\ldots \] 3. **Subtract the first equation from the second**: \[ 10,000y - 100y = 4467.67676767\ldots - 44.67676767\ldots \] This simplifies to: \[ 9900y = 4467 - 44 \] \[ 9900y = 4423 \] \[ y = \frac{4423}{9900} \] ### Step 2: Convert \( 0.14\overline{44} \) to a fraction Let \( x = 0.14\overline{44} \). 1. **Multiply by 100**: \[ 100x = 14.444444\ldots \] 2. **Multiply by 10,000**: \[ 10,000x = 1444.444444\ldots \] 3. **Subtract the first equation from the second**: \[ 10,000x - 100x = 1444.444444\ldots - 14.444444\ldots \] This simplifies to: \[ 9900x = 1444 - 14 \] \[ 9900x = 1430 \] \[ x = \frac{1430}{9900} \] ### Step 3: Add the two fractions Now we need to add \( y \) and \( x \): \[ y + x = \frac{4423}{9900} + \frac{1430}{9900} = \frac{4423 + 1430}{9900} = \frac{5853}{9900} \] ### Step 4: Simplify the fraction To simplify \( \frac{5853}{9900} \), we can find the greatest common divisor (GCD) of 5853 and 9900. After finding the GCD, we can simplify: \[ \frac{5853 \div 3}{9900 \div 3} = \frac{1951}{3300} \] ### Step 5: Convert to decimal Now we can convert \( \frac{1951}{3300} \) to a decimal: \[ 1951 \div 3300 = 0.591212121\ldots \] Since \( 12 \) is repeating, we can express this as: \[ 0.5912\overline{12} \] ### Final Answer The value of \( (0.44\overline{67} + 0.14\overline{44}) \) is: \[ \boxed{0.5912\overline{12}} \]
Promotional Banner

Topper's Solved these Questions

  • DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK |20 Videos
  • DATA HANDLING

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 24 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos

Similar Questions

Explore conceptually related problems

The value of 0.bar(09)=

The value of (0.bar(63) + 0.bar(37)) is

0.34bar(67)+0.13bar(33)

The value of 0.bar(45)+ 0.bar(36) is