Home
Class 7
MATHS
Evaluate : ((3^(4))^(4)xx9^(6))/((27)^(7...

Evaluate : `((3^(4))^(4)xx9^(6))/((27)^(7)xx3^(9))`

A

3

B

9

C

`(1)/(3)`

D

`(1)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\frac{(3^4)^4 \times 9^6}{27^7 \times 3^9}\), we will simplify it step by step. ### Step 1: Rewrite all terms in powers of 3 We know that: - \(9 = 3^2\) - \(27 = 3^3\) So we can rewrite the expression as: \[ \frac{(3^4)^4 \times (3^2)^6}{(3^3)^7 \times 3^9} \] ### Step 2: Apply the power of a power rule Using the rule \((a^m)^n = a^{m \cdot n}\), we can simplify the powers: - \((3^4)^4 = 3^{4 \cdot 4} = 3^{16}\) - \((3^2)^6 = 3^{2 \cdot 6} = 3^{12}\) - \((3^3)^7 = 3^{3 \cdot 7} = 3^{21}\) Now the expression becomes: \[ \frac{3^{16} \times 3^{12}}{3^{21} \times 3^9} \] ### Step 3: Combine the powers in the numerator Using the rule \(a^m \times a^n = a^{m+n}\), we can combine the powers in the numerator: \[ 3^{16 + 12} = 3^{28} \] So now we have: \[ \frac{3^{28}}{3^{21} \times 3^9} \] ### Step 4: Combine the powers in the denominator Again using \(a^m \times a^n = a^{m+n}\), we can combine the powers in the denominator: \[ 3^{21 + 9} = 3^{30} \] Now the expression simplifies to: \[ \frac{3^{28}}{3^{30}} \] ### Step 5: Subtract the exponents Using the property \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify further: \[ 3^{28 - 30} = 3^{-2} \] ### Step 6: Convert the negative exponent A negative exponent means we take the reciprocal: \[ 3^{-2} = \frac{1}{3^2} \] ### Step 7: Calculate \(3^2\) Calculating \(3^2\): \[ 3^2 = 9 \] Thus, we have: \[ \frac{1}{3^2} = \frac{1}{9} \] ### Final Answer The final answer is: \[ \frac{1}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWERS AND ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SECTION-A (SELF ASSESSMENT SHEET-5(A))|10 Videos
  • POWERS AND ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SECTION-B SQUARE ROOTS AND CUBE ROOTS (QUESTION BANK 5(B))|22 Videos
  • POWERS AND ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SECTION-B SQUARE ROOTS AND CUBE ROOTS (SOLVED EXAMPLES)|10 Videos
  • POLYGONS AND QUADRILATERALS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • PROFIT AND LOSS AND DISCOUNT

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (6^(4)xx9^(2)xx25^(3))/(3^(2)xx4^(2)xx15^(6))

Evaluate: (((8)/(9))^(2)xx(-3)^(7)xx((1)/(2))^(3))/((27)^(2)xx64)

(3^(2(n+6))xx9^(2n-7))/27^(2n)=

(9/4)^4xx(28/27)^3

3sqrt((3^(6)xx4^(3)xx2^(6))/(8^(9)xx2^(3)) =____________

81^(1/4)xx9^(3//2)xx27^(- 4/3)=

Simplify : (i) (12^(4)+9^(3)xx4)/(6^(3)xx8^(2)xx27)( ii) 2^(3)xx a^(3)xx5a^(4)

Simplify: ((9)^(3)xx27xxt^(4))/((3)^(-2)xx(3)^(4)xxt^(2))

Evaluate :   ((2)/(3))^(3)times((4)/(9))^(5)times((9)/(8))^(3)

S CHAND IIT JEE FOUNDATION-POWERS AND ROOTS -SECTION-A (QUESTION BANK-5(A))
  1. The expression (p^(-2x)q^(3y))^(6)div(p^(3)q^(-1))^(-4x) after simplif...

    Text Solution

    |

  2. The expression a^((2)/(3)){a^((1)/(3))(a^((1)/(4)))^(4)}^((1)/(4)) is ...

    Text Solution

    |

  3. Evaluate : ((3^(4))^(4)xx9^(6))/((27)^(7)xx3^(9))

    Text Solution

    |

  4. The value of (2^(n+4)-2*2^(n))/(2.2^(n+3))+2^(-3)

    Text Solution

    |

  5. The expression ((x+1/y)^adot(x-1/y)^b)/((y+1/x)^adot(y-1/x)^b) reduces...

    Text Solution

    |

  6. If (p/q)^(r x-s)=(q/p)^(p x-q) , then find the value of xdot

    Text Solution

    |

  7. If (ab^(-1))^(2x-1)=(ba^(-1))^(x-2) then what is the value of x?

    Text Solution

    |

  8. ((2^(m))/(2^(n)))^(t)xx((2^(n))/(2^(t)))^(m)xx((2^(t))/(2^(m)))^(n) is...

    Text Solution

    |

  9. Find the value of x when 4^(2x)=(1)/(32)

    Text Solution

    |

  10. If 2^(x+4)-2^(x+2)=3, then x is equal to

    Text Solution

    |

  11. [1-2(1-2)^(-1)]^(-1)

    Text Solution

    |

  12. In the expression (2^(x)+1)/((7)^(-1)+(2)^(-1))=14, the value of x is

    Text Solution

    |

  13. If m^(n).n^(m)=800, then the value of (n)/(m) is (m < n)

    Text Solution

    |

  14. If a^(2x+2)=1, where a is a positive real number other than 1, then x ...

    Text Solution

    |

  15. If 3^(x)-3^(x-1)=18, then x^(x) is equal to

    Text Solution

    |

  16. If x^(11)=y^(0) and x=2y, then y is equal to

    Text Solution

    |

  17. The value of ((5)^(0.25)xx(125)^(0.25))/((256)^(0.10)xx(256)^(0.15)) i...

    Text Solution

    |

  18. [3^(2^(3))-(3^(2))^(3)] is equal to

    Text Solution

    |

  19. If x^y=y^x , then (x/y)^(x/y) is equal to x^(y/x) b. x^(y/x-1) c. 1 d....

    Text Solution

    |

  20. If a and b are positive integers such that a^(b)=125, then (a-b)^(a+b-...

    Text Solution

    |