Home
Class 7
MATHS
(-a-b)(b-a) is...

`(-a-b)(b-a)` is

A

`a^(2)+b^(2)`

B

`b^(2)-a^(2)`

C

`a^(2)-b^(2)`

D

`-(b^(2)+a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((-a-b)(b-a)\), we will use the distributive property (also known as the FOIL method for binomials). Here’s the step-by-step solution: ### Step 1: Rewrite the expression We start with the expression: \[ (-a - b)(b - a) \] ### Step 2: Apply the distributive property We will distribute each term in the first bracket to each term in the second bracket: \[ (-a)(b) + (-a)(-a) + (-b)(b) + (-b)(-a) \] ### Step 3: Calculate each term Now we will calculate each of the products: 1. \((-a)(b) = -ab\) 2. \((-a)(-a) = a^2\) 3. \((-b)(b) = -b^2\) 4. \((-b)(-a) = ab\) ### Step 4: Combine the results Now we combine all the terms we calculated: \[ -ab + a^2 - b^2 + ab \] ### Step 5: Simplify the expression Notice that \(-ab\) and \(ab\) are like terms and they cancel each other out: \[ a^2 - b^2 \] ### Final Result Thus, the simplified expression is: \[ a^2 - b^2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If distinct and positive quantities a ,b ,c are in H.P. then (a) b/c= (a-b)/(b-c) (b) b^2>ac (c) b^2< ac (d) a/c=(a-b)/(b-c)

If a,b,c are in G.P., then (A) (a-b)/(b-c)=a/a (B) (a-b)/(b-c)=a/b (C) (a-b)/(b-c)=a/c (D) (a-b)/(b-c)=b/a

Knowledge Check

  • The value of a/(a-b)+b/(b-a) is

    A
    `((a+b))/((a-b))`
    B
    `-1`
    C
    `2ab`
    D
    1
  • The value of (a)/(a-b) + (b)/(b -a) is

    A
    `((a+b))/((a -b))`
    B
    `-1`
    C
    2 ab
    D
    1
  • The value of (a)/( a - b) + (b)/( b - c) is

    A
    `((a + b))/((a - b))`
    B
    `-1`
    C
    2ab
    D
    1
  • Similar Questions

    Explore conceptually related problems

    (a(a+c-b))/(b(b+c-a))is

    If log15=a and log75=b, then log_(75)45 is: (3b-a)/(a)( b) (b-3a)/(a)(3a-b)/(b) (d) (a-3b)/(b)

    a@b = (a+b)(ab+b) a#b = (a-b)(ab-b) aDeltab = (a@b) - (a#b) Find the value of (1@1)Delta(2#2) :

    a"@"b=(a+b)(ab+b) a#b=(a-b)(ab-b) aDeltab=(a"@"b)-(a#b) Find the value of (1"@"1Delta(2#2)

    a@b = (a+b)(ab+b) a#b = (a-b)(ab-b) aDeltab = (a@b) - (a#b) Find the value of ((1@(2Delta3))#4) :