Home
Class 7
MATHS
(2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1)=?...

`(2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1)=?`

A

`0.3`

B

`1.3`

C

`2.2`

D

`3.3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2.3 \times 2.3 \times 2.3 - 1) / (2.3 \times 2.3 + 2.3 + 1)\), we can use the algebraic identities for cubes and squares. ### Step-by-Step Solution: 1. **Identify the expression**: We have the expression \((2.3^3 - 1) / (2.3^2 + 2.3 + 1)\). 2. **Recognize the identity**: We can apply the difference of cubes identity, which states that \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\). Here, \(a = 2.3\) and \(b = 1\). 3. **Apply the difference of cubes**: \[ 2.3^3 - 1^3 = (2.3 - 1)(2.3^2 + 2.3 \cdot 1 + 1^2) \] This simplifies to: \[ (2.3 - 1)(2.3^2 + 2.3 + 1) \] 4. **Calculate \(2.3 - 1\)**: \[ 2.3 - 1 = 1.3 \] 5. **Substitute back into the expression**: The numerator becomes: \[ (1.3)(2.3^2 + 2.3 + 1) \] The denominator remains: \[ 2.3^2 + 2.3 + 1 \] 6. **Simplify the expression**: Now we can simplify: \[ \frac{(1.3)(2.3^2 + 2.3 + 1)}{(2.3^2 + 2.3 + 1)} = 1.3 \] ### Final Answer: \[ \frac{(2.3 \times 2.3 \times 2.3 - 1)}{(2.3 \times 2.3 + 2.3 + 1)} = 1.3 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

2/3xx1/3-1/3xx5/2=

(3.7xx3.7+2.3xx2.3+2xx3.7xx2.3)/(4.6xx4.6-3.4xx3.4)=

(2 1/3xx3 1/2)=

What will come in place of question mark (?) . 3.2xx1.1-1.1 xx 3.3+3.3 xx 2 =?

(2/7)^3xx(1/2)^3

Simplify: (1/2 xx 2/3)/(1/2 xx 2/3+3/8 xx 1/3)

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =