Home
Class 7
MATHS
a^(3)+3a^(2)b+3ab^(2)+b^(3) divided by a...

`a^(3)+3a^(2)b+3ab^(2)+b^(3)` divided by `a^(2)+2ab+b^(2)` is

A

`a^(2)+b^(2)`

B

`a+2b`

C

`2a^(2)+b^(2)`

D

`a+b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \( a^3 + 3a^2b + 3ab^2 + b^3 \) by \( a^2 + 2ab + b^2 \), we can follow these steps: ### Step 1: Identify the expressions We have the numerator: \[ a^3 + 3a^2b + 3ab^2 + b^3 \] And the denominator: \[ a^2 + 2ab + b^2 \] ### Step 2: Recognize the patterns The numerator can be recognized as the expansion of \( (a + b)^3 \): \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] The denominator can be recognized as the expansion of \( (a + b)^2 \): \[ (a + b)^2 = a^2 + 2ab + b^2 \] ### Step 3: Rewrite the expression Now we can rewrite the original expression: \[ \frac{a^3 + 3a^2b + 3ab^2 + b^3}{a^2 + 2ab + b^2} = \frac{(a + b)^3}{(a + b)^2} \] ### Step 4: Simplify the expression Using the property of exponents that states \( \frac{x^m}{x^n} = x^{m-n} \), we can simplify: \[ \frac{(a + b)^3}{(a + b)^2} = (a + b)^{3-2} = (a + b)^1 = a + b \] ### Final Answer Thus, the result of the division is: \[ a + b \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

3a^(2)b-243ab^(2)

One of the factors of a^(3) - b^(3) - a^(2)b + ab^(2) + a^(2) - b^(2) is

If (a^(3//2)-ab^(1//2)+a^(1//2)b-b^(3//2)) is divided by (a^(1//2)-b^(1//2)) , then the quotient is :

If a+b+c=0, then which of the following are correct? 1. a^(3) + b^(3) + c^(3) = 3abc 2. a^(2) + b^(2) + c^(2) = -2(ab + bc + ca) 3. a^(3) + b^(3) + c^(3) = -3ab(a+b) Select the correct answer using the code given below

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)