Home
Class 7
MATHS
Factorise : 36x^(4) - 84x^(2)y^(2) +49y^...

Factorise : `36x^(4) - 84x^(2)y^(2) +49y^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 36x^4 - 84x^2y^2 + 49y^4 \), we can follow these steps: ### Step 1: Identify the terms The expression consists of three terms: - \( 36x^4 \) - \( -84x^2y^2 \) - \( 49y^4 \) ### Step 2: Rewrite the first and last terms as squares Notice that: - \( 36x^4 = (6x^2)^2 \) - \( 49y^4 = (7y^2)^2 \) So we can rewrite the expression as: \[ (6x^2)^2 - 84x^2y^2 + (7y^2)^2 \] ### Step 3: Recognize the middle term The middle term \( -84x^2y^2 \) can be expressed as \( -2 \cdot (6x^2) \cdot (7y^2) \). ### Step 4: Rewrite the expression Now, we can rewrite the expression as: \[ (6x^2)^2 - 2 \cdot (6x^2)(7y^2) + (7y^2)^2 \] ### Step 5: Identify the perfect square trinomial This expression is a perfect square trinomial, which can be factored as: \[ (a - b)^2 \] where \( a = 6x^2 \) and \( b = 7y^2 \). ### Step 6: Write the factored form Thus, we can factor the expression as: \[ (6x^2 - 7y^2)^2 \] ### Final Answer The factorised form of \( 36x^4 - 84x^2y^2 + 49y^4 \) is: \[ (6x^2 - 7y^2)(6x^2 - 7y^2) \] or simply: \[ (6x^2 - 7y^2)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise : 16x^(4)-y^(4)

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise: x^(2)-36

Factorise: 36x ^(3) y - 60x ^(2) y ^(3) z

Factorise : 49p^(2)-36

Factorise 16x^(4)-81y^(4) .

Factorise 49x^(2) - 16y^(2) .

Factorise : 32(x+y)^(2)-2x-2y

Factorise: 4x ^(2) - y ^(2)+ 6y-9.