Home
Class 7
MATHS
Factorise the following : 3a^(2)+7ab -6...

Factorise the following :
`3a^(2)+7ab -6b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(3a^2 + 7ab - 6b^2\), we will use the method of middle term splitting. Here are the steps: ### Step 1: Identify the coefficients The expression is \(3a^2 + 7ab - 6b^2\). The coefficients are: - \(A = 3\) (coefficient of \(a^2\)) - \(B = 7\) (coefficient of \(ab\)) - \(C = -6\) (coefficient of \(b^2\)) ### Step 2: Find two numbers that multiply to \(A \cdot C\) and add to \(B\) We need to find two numbers that multiply to \(3 \cdot (-6) = -18\) and add up to \(7\). The numbers that satisfy this condition are \(9\) and \(-2\). ### Step 3: Rewrite the middle term using the two numbers We can rewrite \(7ab\) as \(9ab - 2ab\). So, the expression becomes: \[ 3a^2 + 9ab - 2ab - 6b^2 \] ### Step 4: Group the terms Now, we group the terms: \[ (3a^2 + 9ab) + (-2ab - 6b^2) \] ### Step 5: Factor out the common factors from each group From the first group \(3a^2 + 9ab\), we can factor out \(3a\): \[ 3a(a + 3b) \] From the second group \(-2ab - 6b^2\), we can factor out \(-2b\): \[ -2b(a + 3b) \] ### Step 6: Combine the factored terms Now we have: \[ 3a(a + 3b) - 2b(a + 3b) \] We can see that \((a + 3b)\) is a common factor: \[ (a + 3b)(3a - 2b) \] ### Final Answer Thus, the factorised form of \(3a^2 + 7ab - 6b^2\) is: \[ (a + 3b)(3a - 2b) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorise each of the following : (i) 8a^(3)+b^(3)+12a^(2)b+6ab^(2) (ii) 8a^(3)-b^(3)-12a^(2)b+6ab^(2) (iii) 27-125a^(3)-135a+225a^(2) (iv) 64a^(3)-27b^(3)-144a^(2)b+108ab^(2) (v) 27p^(3)-(1)/(216)-(9)/(2)p^(2)+(1)/(4)p

. Factorise the following expressions: i a^(2)+46a+205 iii) ab+ac-b^(2)-bcvi)a^(2)+b^(2)-2(ab-ac+bc)

. Factorise the following expressions: i a^(2)+46a+205 iii) ab+ac-b^(2)-bcvi)a^(2)+b^(2)-2(ab-ac+bc)

Factorise the expression. a ^(2) b + a^(2) c + ab + ac + b ^(2) c + c ^(2) b

Factorise : a^(3) - ab^(2) + a^(2)b - b^(3)

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 6ax + 9

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)