Home
Class 7
MATHS
Factorise : a^(3) -b^(3)+ 4(a-b)...

Factorise : `a^(3) -b^(3)+ 4(a-b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 - b^3 + 4(a - b) \), we can follow these steps: ### Step 1: Identify the difference of cubes We recognize that \( a^3 - b^3 \) can be factored using the formula for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] ### Step 2: Rewrite the expression We can rewrite the original expression by substituting the factored form of \( a^3 - b^3 \): \[ a^3 - b^3 + 4(a - b) = (a - b)(a^2 + ab + b^2) + 4(a - b) \] ### Step 3: Factor out the common term Now, we notice that \( (a - b) \) is a common factor in both terms: \[ = (a - b)(a^2 + ab + b^2 + 4) \] ### Step 4: Write the final factored form Thus, the final factored form of the expression is: \[ (a - b)(a^2 + ab + b^2 + 4) \] ### Summary The expression \( a^3 - b^3 + 4(a - b) \) can be factorised as: \[ (a - b)(a^2 + ab + b^2 + 4) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorise a^(3)-(b-c)^(3) .

Factorise : a^(3)-b^(3)+1+3ab

Factorise : a^(3) +8/27 b^(3)

Factorise : a^(3) - ab^(2) + a^(2)b - b^(3)

Factorise a^(6)-b^(6) .

Factorise 12a^(3) b^(3) - 3ab .

Factorise : 3a^3b-243ab^3

Factorise: 18a^(3) -27a^(2)b