Home
Class 7
MATHS
(49a^(2))/(25b^(2))-(x^(2))/(100y^(2))=...

`(49a^(2))/(25b^(2))-(x^(2))/(100y^(2))`= _______

A

`((7a)/(5b)+x/(10y))((7a)/(5b)-x/y)`

B

`((7a)/(5a)+x/(10y))((7a)/(5b)+x/y)`

C

`((7a)/(5b)+x/(10y))((7a)/(5b)-x/(10y))`

D

`((7a)/(5b)+x/(10y))((7a)/(5b)-x/(10y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{49a^2}{25b^2} - \frac{x^2}{100y^2}\), we can factor it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \frac{49a^2}{25b^2} - \frac{x^2}{100y^2} \] ### Step 2: Identify perfect squares Notice that: - \(49a^2\) is a perfect square, as \(49 = (7)^2\) and \(a^2 = (a)^2\). - \(25b^2\) is also a perfect square, as \(25 = (5)^2\) and \(b^2 = (b)^2\). - \(x^2\) is a perfect square, as \(x^2 = (x)^2\). - \(100y^2\) is a perfect square, as \(100 = (10)^2\) and \(y^2 = (y)^2\). Thus, we can rewrite the expression as: \[ \left(\frac{7a}{5b}\right)^2 - \left(\frac{x}{10y}\right)^2 \] ### Step 3: Apply the difference of squares formula We can use the difference of squares identity, which states that \(A^2 - B^2 = (A - B)(A + B)\). Here, let: - \(A = \frac{7a}{5b}\) - \(B = \frac{x}{10y}\) So we can write: \[ \left(\frac{7a}{5b}\right)^2 - \left(\frac{x}{10y}\right)^2 = \left(\frac{7a}{5b} - \frac{x}{10y}\right)\left(\frac{7a}{5b} + \frac{x}{10y}\right) \] ### Step 4: Write the final factored form Thus, the expression can be factored as: \[ \left(\frac{7a}{5b} - \frac{x}{10y}\right)\left(\frac{7a}{5b} + \frac{x}{10y}\right) \] ### Final Answer The final factored form of the expression \(\frac{49a^2}{25b^2} - \frac{x^2}{100y^2}\) is: \[ \left(\frac{7a}{5b} - \frac{x}{10y}\right)\left(\frac{7a}{5b} + \frac{x}{10y}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

64a^(2)+25b^(2)+80ab-49c^(2)

x ^ (2) - (y ^ (2)) / (100)

a^(2)-49b^(2)

Factorise: (i) 49a^(2)+70ab+25b^(2) (ii) (25)/(4)x^(2)-(y^(2))/(9)

For the given ellipse ,find the equation of directrix (i) (x^(2))/(25) + (y^(2))/(9) = 1 iii (x^(2))/(36) + (y^(2))/(16) = 1 (x^(2))/(49) + (y^(2))/(36) = 1 (iv) (x^(2))/(100) + (y^(2))/(400) = 1.

Factorize: 16a^(2)-(25)/(4a^(2))( ii) 16a^(2)b-(b)/(16a^(2))100(x+y)^(2)-81(a+b)^(2)(x-1)^(2)-(x-2)^(2)

Factorize each of the following expressions: x^(4)-625(2)x^(4)-149(a-b)^(2)-25(a+b)^(2) (4) x-y-x^(2)+y^(2)16(2x-1)^(2)-25y^(2)(6)4(xy+1)^(2)-9(x-1)^(2)

If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is