Home
Class 7
MATHS
9a^(2)-(2b-c)^(2)=...

`9a^(2)-(2b-c)^(2)`=_______

A

`(3a-2b-c)(3a+2b-c)`

B

`(3a+2b-c)(3a-2b+c)`

C

`(-3a+2b+c)(3a+2b-c)`

D

`(3a+2b+c)(3a+2b-c)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( 9a^2 - (2b - c)^2 \), we can use the difference of squares formula, which states that \( x^2 - y^2 = (x - y)(x + y) \). ### Step-by-step Solution: 1. **Identify the squares**: We can rewrite \( 9a^2 \) as \( (3a)^2 \) and \( (2b - c)^2 \) is already in square form. \[ 9a^2 - (2b - c)^2 = (3a)^2 - (2b - c)^2 \] 2. **Apply the difference of squares formula**: Using the formula \( x^2 - y^2 = (x - y)(x + y) \), we set \( x = 3a \) and \( y = (2b - c) \). \[ = (3a - (2b - c))(3a + (2b - c)) \] 3. **Simplify the expressions**: Now, simplify both factors: - For the first factor: \[ 3a - (2b - c) = 3a - 2b + c \] - For the second factor: \[ 3a + (2b - c) = 3a + 2b - c \] 4. **Combine the factors**: Now we can write the final factored form: \[ = (3a - 2b + c)(3a + 2b - c) \] Thus, the factorized form of \( 9a^2 - (2b - c)^2 \) is: \[ (3a - 2b + c)(3a + 2b - c) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a+b+c=9anda^(2)+b^(2)+c^(2)=21 , then ab+bc+ca is equal to

If a+b+c=9 and a^(2)+b^(2)+c^(2)=35, find the value of a^(3)+b^(3)+c^(3)-3abc

If a^(2)+9b^(2)-4c^(2)=6ab, then the family of lines ax+by+c=0 are concurrent at:

If 4a^(2)+9b^(2)-c^(2)-12ab=0 then family of straight lines ax+by+c=0 are concurrent at P and Q then values of P & Q are

16a^(2)-24a+2bc+9-b^(2)-c^(2)

If (a-3)^(2)+(b-4)^(2) +(c-9)^(2)=0 then what is the value of sqrt(a+b+c) ?