Home
Class 7
MATHS
x^(2)+6xy -z^(2)+9y^(2)=...

`x^(2)+6xy -z^(2)+9y^(2)=`_______

A

`(x+3y-z)(x+3y-z)`

B

`(x-3y+z)(x-3y+z)`

C

`(x+3y+z)(x+3y-z)`

D

`(x-3y-z)(x-3y-z)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 + 6xy - z^2 + 9y^2 \), we can follow these steps: ### Step 1: Rearrange the expression We can rearrange the expression to group the terms conveniently: \[ x^2 + 6xy + 9y^2 - z^2 \] ### Step 2: Identify perfect squares Notice that \( x^2 + 6xy + 9y^2 \) can be recognized as a perfect square. We can rewrite it as: \[ (x + 3y)^2 \] This is because: \[ (x + 3y)^2 = x^2 + 2 \cdot x \cdot 3y + (3y)^2 = x^2 + 6xy + 9y^2 \] ### Step 3: Substitute back into the expression Now substitute this back into our rearranged expression: \[ (x + 3y)^2 - z^2 \] ### Step 4: Apply the difference of squares formula We can now use the difference of squares formula, which states that \( a^2 - b^2 = (a + b)(a - b) \). Here, let \( a = (x + 3y) \) and \( b = z \): \[ (x + 3y)^2 - z^2 = (x + 3y + z)(x + 3y - z) \] ### Final Answer Thus, the factorized form of the expression \( x^2 + 6xy - z^2 + 9y^2 \) is: \[ (x + 3y + z)(x + 3y - z) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Add the following expressions: 5x^(2) + 7y - 6z^(2) , 4y + 3x^(2), 9x^(2) + 2z^(2) - 9y and 2y - 2x^(2)

(x^(2))/(4)-3xy^(3)+9y^(6)

3^4x^3y^6z^4xx27x^(-2)z^(-6)div81xy^(2)z^(-3)= ______

If A = 7x^(2) + 5xy - 9y^(2), B = - 4x^(2) + xy + 5y^(2) and C = 4y^(2) - 3x^(2) - 6xy then show that A + B + C = 0

Factoris the expression. 24 x ^(2) yz ^(3) - 6xy^(3) z ^(2) + 15 x ^(2) y ^(2) z - 5xyz

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

Divide: (i) 5m^(2) - 30 m^(2) + 45m by 5m (ii) 8x^(2) y^(2) - 6xy + 10 x^(2) y^(3) by 2xy (iii) 9x^(2) y - 6xy + 12 xy^(2) by - 3xy (iv) 12x^(4) + 8x^(3) - 6x^(2) by -2x^(2)

Add the algebraic expressions: 4xy^(2)-7x^(2)y,12x^(2)y-6xy^(2),-3x^(2)y+5xy^(2)

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c