Home
Class 7
MATHS
25a^(2)-4b^(2)+5a+2b=...

`25a^(2)-4b^(2)+5a+2b=` ______

A

`(5a+2b-1)(5a-2b)`

B

`(5a+2b+1)(5a-2b)`

C

`(5a+2b)(5a-2b-1)`

D

`(5a+2b)(5a-2b+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 25a^2 - 4b^2 + 5a + 2b \), we will follow these steps: ### Step 1: Rearranging the Expression We start with the expression: \[ 25a^2 - 4b^2 + 5a + 2b \] ### Step 2: Grouping Terms We can rearrange the expression to group the quadratic terms and the linear terms: \[ (25a^2 - 4b^2) + (5a + 2b) \] ### Step 3: Recognizing a Difference of Squares The first part \( 25a^2 - 4b^2 \) is a difference of squares. We can rewrite it as: \[ (5a)^2 - (2b)^2 \] ### Step 4: Applying the Difference of Squares Formula Using the difference of squares formula \( x^2 - y^2 = (x + y)(x - y) \), we can factor \( (5a)^2 - (2b)^2 \): \[ (5a + 2b)(5a - 2b) \] ### Step 5: Combining with the Linear Terms Now, we can combine this with the linear terms \( 5a + 2b \): \[ (5a + 2b)(5a - 2b) + (5a + 2b) \] ### Step 6: Factoring Out the Common Term Notice that \( (5a + 2b) \) is a common factor. We can factor it out: \[ (5a + 2b)((5a - 2b) + 1) \] ### Step 7: Final Expression Thus, the final factored form of the expression is: \[ (5a + 2b)(5a - 2b + 1) \] ### Summary The expression \( 25a^2 - 4b^2 + 5a + 2b \) can be factored as: \[ (5a + 2b)(5a - 2b + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 25a^(2)-4b^(2) +28bc-49c^(2)

Simplify (5a-2b) (25a^(2)+10ab+4b^(2)_) -(2a+5b) (4a^(2)-10ab+25b^(2)).

If a ** b = a ^(2) + b ^(2) and a . b = a ^(2) - b ^(2), then the value of (5 * 2) . 25 is

If a * b = a^(2) + b^(2) and a.b = a^(2) - b^(2) , then the value of (5 * 2).25 is

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 4x ^(2) - 25 y ^(2)

Find the value of (25 a ^(2) + 16 b ^(2) + 9 + 40 ab - 2 4b - 30 a) at a =- 1 and b =2.

Factorise. (i) 4p^2 - 9q^2 (ii) 63a^2 - 112b^2 (iii) 49x^2 - 36 (iv) 16 x^5 - 144x^3 (v) (l + m)^2 - (l--m)^2 (vi) 9x^2y^2 - 16 (vii) (x^2 - 2xy + y^2) - z^2 (viii) 25a^2 - 4b^2 + 28bc - 49c^2

Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+25b^(2)) (iii) (5a+(1)/(2)) (25a^(2)-(5a)/(2)+(1)/(4)) " " (iv) (a+b-2)[a^(2)+b^(2)+4(a+b)+4] .