Home
Class 7
MATHS
x^(4)-x^(2)y^(2)-72y^(4)=...

`x^(4)-x^(2)y^(2)-72y^(4)`=______

A

`(x^(2)+9y^(2))(x^(2)-8y^(2))`

B

`(x+3y)(x+3y)(x^(2)+8y^(2))`

C

`(x+3y)(x-3y)(x^(2)+8y^(2))`

D

`(x^(2)-9y^(2))(x^(2)-8y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( x^4 - x^2y^2 - 72y^4 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 - x^2y^2 - 72y^4 \] We can rearrange it to make it easier to factor: \[ x^4 - 9x^2y^2 + 8x^2y^2 - 72y^4 \] ### Step 2: Group the terms Now, we can group the terms: \[ (x^4 - 9x^2y^2) + (8x^2y^2 - 72y^4) \] ### Step 3: Factor out common terms From the first group \( (x^4 - 9x^2y^2) \), we can factor out \( x^2 \): \[ x^2(x^2 - 9y^2) \] From the second group \( (8x^2y^2 - 72y^4) \), we can factor out \( 8y^2 \): \[ 8y^2(x^2 - 9y^2) \] ### Step 4: Combine the factored terms Now we can combine the two factored groups: \[ x^2(x^2 - 9y^2) + 8y^2(x^2 - 9y^2) \] This gives us: \[ (x^2 + 8y^2)(x^2 - 9y^2) \] ### Step 5: Factor the difference of squares The term \( (x^2 - 9y^2) \) can be factored further using the difference of squares: \[ x^2 - 9y^2 = (x - 3y)(x + 3y) \] ### Final Factored Form Putting it all together, we have: \[ (x^2 + 8y^2)(x - 3y)(x + 3y) \] Thus, the final answer is: \[ (x^2 + 8y^2)(x - 3y)(x + 3y) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 8 |10 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorize: x^(4)+x^(2)y^(2)+y^(4)

x^(4) + y^(4) + 2x^(2)y^(2) = "_______"

Show that (x^(2)+y^(2))^(4)=(x^(4)-6x^(2)y^(2)+y^(4))^(2)+(4x^(3)y-4xy^(3))^(2)

The factors of (x ^(4) - 7x ^(2) y ^(2) + y ^(4)) are

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?