Home
Class 7
MATHS
p(q^(2)+r^(2))-q(r^(2)+p^(2)) can be fac...

`p(q^(2)+r^(2))-q(r^(2)+p^(2))` can be factorised as

A

`(P+q)(r^(2)-pq)`

B

`(p-q)(r^(2)-pq)`

C

`(p-q)(pq-r^(2))`

D

`(p-qr)(p+q)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( p(q^2 + r^2) - q(r^2 + p^2) \), we will follow these steps: ### Step 1: Expand the expression We start by expanding the expression: \[ p(q^2 + r^2) - q(r^2 + p^2) = pq^2 + pr^2 - qr^2 - qp^2 \] ### Step 2: Rearrange the terms Next, we rearrange the terms to group similar ones: \[ pq^2 - qp^2 + pr^2 - qr^2 \] ### Step 3: Factor by grouping Now we can factor by grouping. We will group the first two terms and the last two terms: \[ (pq^2 - qp^2) + (pr^2 - qr^2) \] ### Step 4: Factor out common factors From the first group \( pq^2 - qp^2 \), we can factor out \( pq \): \[ pq(q - p) \] From the second group \( pr^2 - qr^2 \), we can factor out \( r^2 \): \[ r^2(p - q) \] So, we rewrite the expression as: \[ pq(q - p) + r^2(p - q) \] ### Step 5: Factor out the common binomial Notice that both terms contain the factor \( (p - q) \): \[ (p - q)(pq + r^2) \] ### Final Result Thus, the expression \( p(q^2 + r^2) - q(r^2 + p^2) \) can be factorised as: \[ (p - q)(pq + r^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

If (p^(2)+q^(2)), (pq+qr), (q^(2)+r^(2)) are in GP then prove that p, q, r are in GP.

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s

Find the value if (p^(2)+q^(2))/(r^(2)+s^(2)) if p:q: : r:s

If (p ^(2) + q ^(2)) // (r ^(2) + s ^(2)) = (pq) //(rs), then what is the value of (p-q)/(p+q) in terms of r and s ?

Factorise: p^(2)q-pr^(2)-pq+r^(2)

If Delta=|[0,q,r],[q,r,p],[r,p,q]|, then |[rq-p^(2),pr-q^(2),pq-r^(2)],[rp-q^(2),pq-r^(2),rq-p^(2)],[pq-r^(2),rq-p^(2),pr-q^(2)]| is equal to

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

In the given quadrilateral ABCD , p^(@)+ q^(@)=100^(2) , a^(@)=140^(@) and r^(@)=1/2(a^(2)+q^(@)) . Find the angles p^(@), q^(@), r^(@) and s^(@) .