Home
Class 7
MATHS
Factorise : 16(a-b)^(3)-24(a-b)^(2) . Th...

Factorise : `16(a-b)^(3)-24(a-b)^(2)` . The factors are :

A

`4(a-b)(2a-b-3)`

B

`8(a-b)^(2)(2a-2b-3)`

C

`8(a-b)(2a-b-4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 16(a-b)^3 - 24(a-b)^2 \), we can follow these steps: ### Step 1: Identify the common factor We notice that both terms in the expression \( 16(a-b)^3 \) and \( -24(a-b)^2 \) have a common factor of \( (a-b)^2 \). ### Step 2: Factor out the common factor We can factor out \( (a-b)^2 \) from both terms: \[ 16(a-b)^3 - 24(a-b)^2 = (a-b)^2 [16(a-b) - 24] \] ### Step 3: Simplify the expression inside the brackets Now, we simplify the expression inside the brackets: \[ 16(a-b) - 24 = 16a - 16b - 24 \] ### Step 4: Factor out the numerical coefficient Next, we can factor out the common numerical coefficient from \( 16a - 16b - 24 \): \[ 16a - 16b - 24 = 8(2a - 2b - 3) \] ### Step 5: Combine the factors Now, we can combine our factors: \[ 16(a-b)^3 - 24(a-b)^2 = (a-b)^2 \cdot 8(2a - 2b - 3) \] ### Final Factorised Form Thus, the final factorised form of the expression is: \[ 8(a-b)^2(2a - 2b - 3) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) -b^(3)+ 4(a-b)

Factorise (a+b)^(3)-a-b .

Factorize: (a-2b)^(3)-512b^(3)

Factorise: 16a ^(2)- 24ab

Factorise (2a + 3b)^(2) - (3a - 2b)^(2) .

Factorise: 18a^(3) -27a^(2)b

Factorise : a^2-b^2-a-b

Factorise: (a+b)^3-(a-b)^3