Home
Class 7
MATHS
Factorise : 8x^(3)-27y^(3)-2x+3y : The f...

Factorise : `8x^(3)-27y^(3)-2x+3y` : The factors are

A

`(2x-3y)(4x^(2)+xy+9y^(2)-1)`

B

`(2x-3y)(4x^(2)-6xy+9y^(2))`

C

`(2x-3y)(4x^(2)+3xy+9y^(2)-1)`

D

`(2x-3y)(4x^(2)+6xy+9y^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 8x^3 - 27y^3 - 2x + 3y \), we can follow these steps: ### Step 1: Rewrite the expression We can express \( 8x^3 \) and \( 27y^3 \) as cubes: \[ 8x^3 = (2x)^3 \quad \text{and} \quad 27y^3 = (3y)^3 \] Thus, we rewrite the expression: \[ (2x)^3 - (3y)^3 - 2x + 3y \] ### Step 2: Group the terms Next, we can group the terms: \[ ((2x)^3 - (3y)^3) + (-2x + 3y) \] ### Step 3: Apply the difference of cubes formula Using the difference of cubes formula \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \), where \( a = 2x \) and \( b = 3y \): \[ (2x - 3y)((2x)^2 + (2x)(3y) + (3y)^2) \] Calculating the second factor: \[ (2x)^2 = 4x^2, \quad (2x)(3y) = 6xy, \quad (3y)^2 = 9y^2 \] So, we have: \[ (2x - 3y)(4x^2 + 6xy + 9y^2) \] ### Step 4: Combine with the remaining terms Now, we need to combine this with the remaining terms \(-2x + 3y\): \[ (2x - 3y)(4x^2 + 6xy + 9y^2) - (2x - 3y) \] ### Step 5: Factor out the common term Notice that both terms have a common factor of \( (2x - 3y) \): \[ (2x - 3y)((4x^2 + 6xy + 9y^2) - 1) \] ### Step 6: Final expression Thus, the final factorised form of the expression is: \[ (2x - 3y)(4x^2 + 6xy + 9y^2 - 1) \] ### Summary The factors of the expression \( 8x^3 - 27y^3 - 2x + 3y \) are: \[ (2x - 3y)(4x^2 + 6xy + 9y^2 - 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -8 |35 Videos
  • DISTANCE TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET -14 |10 Videos
  • FRACTIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-2|10 Videos

Similar Questions

Explore conceptually related problems

Factorise (x+y)^(3)-27z^(3)

Factorise 24x^(3)-375y^(3)

Factorise : 8x^3 - (2x-y)^3

Factorize: 125+8x^(3)-27y^(3)+90xy

Factorise 8x^(2)y^(3)-x^(5)

Factories 8x^(3)+sqrt27 y^(3) .

Factorize: 8(x+y0^(3)-27(x-y)^(3)

Factorize: 8x^(3)y^(3)+27a^(3)

Facorise: 125-8x^3-27y^3-90xy

Factorize: 8x^(3)+27y^(3)+z^(3)-18xyz