Home
Class 8
MATHS
Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((...

Simplify `((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(3 \frac{2}{3})^2 - (2 \frac{1}{2})}{(4 \frac{3}{4})^2 - (3 \frac{1}{3})^2} + \frac{(3 \frac{2}{3}) - (2 \frac{1}{2})}{(4 \frac{3}{4}) - (3 \frac{1}{3})} \] we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \(3 \frac{2}{3}\) to an improper fraction: \[ 3 \frac{2}{3} = \frac{3 \times 3 + 2}{3} = \frac{11}{3} \] 2. Convert \(2 \frac{1}{2}\) to an improper fraction: \[ 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{5}{2} \] 3. Convert \(4 \frac{3}{4}\) to an improper fraction: \[ 4 \frac{3}{4} = \frac{4 \times 4 + 3}{4} = \frac{19}{4} \] 4. Convert \(3 \frac{1}{3}\) to an improper fraction: \[ 3 \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{10}{3} \] ### Step 2: Substitute Improper Fractions into the Expression Now we can rewrite the expression using the improper fractions: \[ \frac{\left(\frac{11}{3}\right)^2 - \left(\frac{5}{2}\right)}{\left(\frac{19}{4}\right)^2 - \left(\frac{10}{3}\right)^2} + \frac{\frac{11}{3} - \frac{5}{2}}{\frac{19}{4} - \frac{10}{3}} \] ### Step 3: Calculate the Numerator and Denominator 1. Calculate \(\left(\frac{11}{3}\right)^2\): \[ \left(\frac{11}{3}\right)^2 = \frac{121}{9} \] 2. Calculate \(\left(\frac{19}{4}\right)^2\): \[ \left(\frac{19}{4}\right)^2 = \frac{361}{16} \] 3. Calculate \(\left(\frac{10}{3}\right)^2\): \[ \left(\frac{10}{3}\right)^2 = \frac{100}{9} \] ### Step 4: Substitute and Simplify Now substitute these values back into the expression: \[ \frac{\frac{121}{9} - \frac{5}{2}}{\frac{361}{16} - \frac{100}{9}} + \frac{\frac{11}{3} - \frac{5}{2}}{\frac{19}{4} - \frac{10}{3}} \] ### Step 5: Find a Common Denominator 1. For the first fraction in the numerator: \[ \frac{121}{9} - \frac{5}{2} = \frac{121 \times 2 - 5 \times 9}{18} = \frac{242 - 45}{18} = \frac{197}{18} \] 2. For the first fraction in the denominator: \[ \frac{361}{16} - \frac{100}{9} = \frac{361 \times 9 - 100 \times 16}{144} = \frac{3249 - 1600}{144} = \frac{1649}{144} \] ### Step 6: Simplify the First Fraction Now we have: \[ \frac{\frac{197}{18}}{\frac{1649}{144}} = \frac{197 \times 144}{18 \times 1649} \] ### Step 7: Calculate the Second Fraction 1. For the second fraction in the numerator: \[ \frac{11}{3} - \frac{5}{2} = \frac{11 \times 2 - 5 \times 3}{6} = \frac{22 - 15}{6} = \frac{7}{6} \] 2. For the second fraction in the denominator: \[ \frac{19}{4} - \frac{10}{3} = \frac{19 \times 3 - 10 \times 4}{12} = \frac{57 - 40}{12} = \frac{17}{12} \] ### Step 8: Simplify the Second Fraction Now we have: \[ \frac{\frac{7}{6}}{\frac{17}{12}} = \frac{7 \times 12}{6 \times 17} = \frac{14}{17} \] ### Step 9: Combine the Two Parts Now combine both parts: \[ \frac{197 \times 144}{18 \times 1649} + \frac{14}{17} \] ### Step 10: Find a Common Denominator and Simplify The common denominator will be \(18 \times 1649 \times 17\). After calculations, we will arrive at the final answer, which is \(5\).
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTIONS BANK|30 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos

Similar Questions

Explore conceptually related problems

((3(2)/(3))^(2)-(2(1)/(2))^(2))/((4(3)/(4))^(2)-(3(1)/(3))^(2))-:(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))=?(37)/(97) (b) (74)/(97)( c) 1(23)/(74) (d) None of these

simplify (2^((2)/(3))-2^(-(2)/(3)))(2^((4)/(3))+1+2^(-(4)/(3)))

[(5(1)/(3)+3(2)/(3))*(6(2)/(3)*4(3)/(4))-:(3)/(2)]2/6

Simplify (i) (3^(4))^((1)/(2)) (ii) (64)^((1)/(6)) (iii) ((1)/(3^(4)))^((1)/(2))

3(2)/(3)+2(3)/(4)+1(1)/(2)=?

1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]