Home
Class 8
MATHS
[(1+(1)/(10+(1)/(10)))xx(1+(1)/(10+(1)/(...

`[(1+(1)/(10+(1)/(10)))xx(1+(1)/(10+(1)/(10)))-(1-(1)/(10+(1)/(10)))xx (1-(1)/(10+(1)/(10)))+(1+(1)/(10+(1)/(10)))+(1-(1)/(10+(1)/(10)))]` simplifies to

A

`(100)/(101)`

B

`(90)/(101)`

C

`(20)/(101)`

D

`(101)/(100)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \left[ \left( 1 + \frac{1}{10 + \frac{1}{10}} \right) \times \left( 1 + \frac{1}{10 + \frac{1}{10}} \right) - \left( 1 - \frac{1}{10 + \frac{1}{10}} \right) \times \left( 1 - \frac{1}{10 + \frac{1}{10}} \right) + \left( 1 + \frac{1}{10 + \frac{1}{10}} \right) + \left( 1 - \frac{1}{10 + \frac{1}{10}} \right) \right] \] ### Step 1: Simplify the inner fractions First, we simplify the term \( 10 + \frac{1}{10} \): \[ 10 + \frac{1}{10} = \frac{100 + 1}{10} = \frac{101}{10} \] ### Step 2: Substitute back into the expression Now substitute this back into the expression: \[ 1 + \frac{1}{10 + \frac{1}{10}} = 1 + \frac{1}{\frac{101}{10}} = 1 + \frac{10}{101} = \frac{101 + 10}{101} = \frac{111}{101} \] And similarly, \[ 1 - \frac{1}{10 + \frac{1}{10}} = 1 - \frac{10}{101} = \frac{101 - 10}{101} = \frac{91}{101} \] ### Step 3: Substitute \( a \) and \( b \) Let \( a = \frac{111}{101} \) and \( b = \frac{91}{101} \). Now the expression becomes: \[ \left( a \times a - b \times b + a + b \right) \] ### Step 4: Calculate \( a^2 \) and \( b^2 \) Calculate \( a^2 \) and \( b^2 \): \[ a^2 = \left( \frac{111}{101} \right)^2 = \frac{12321}{10201} \] \[ b^2 = \left( \frac{91}{101} \right)^2 = \frac{8281}{10201} \] ### Step 5: Substitute \( a^2 \) and \( b^2 \) into the expression Now substitute these values back into the expression: \[ \frac{12321}{10201} - \frac{8281}{10201} + \frac{111}{101} + \frac{91}{101} \] Combine the first two fractions: \[ \frac{12321 - 8281}{10201} = \frac{4040}{10201} \] ### Step 6: Combine \( a + b \) Now combine \( a + b \): \[ a + b = \frac{111 + 91}{101} = \frac{202}{101} = 2 \] ### Step 7: Final expression Now the expression becomes: \[ \frac{4040}{10201} + 2 \] Convert \( 2 \) to a fraction with the same denominator: \[ 2 = \frac{20202}{10201} \] So, \[ \frac{4040 + 20202}{10201} = \frac{24242}{10201} \] ### Step 8: Simplify the final fraction The final simplified expression is: \[ \frac{24242}{10201} \]
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos

Similar Questions

Explore conceptually related problems

[(1+(1)/(10+(1)/(10)))(1+(1)/(10+(1)/(10)))-(1-(1)/(10+(1)/(10)))(1-(1)/(10+(1)/(10)))] simplifies to (20)/(101) (b) (90)/(101) (c) (100)/(101) (d) (101)/(100)

1. (1)/(10)+(3)/(10)+(6)/(10)

((1)/(1.4 )+ (1)/(4.7 ) +(1)/(7.10 )+(1)/(10.13 )+(1)/(13.16)) is equal to

((1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+(1)/(10xx13)+(1)/(13xx16))=?

(1)/(1*6xx10^(-18))

The following steps are involved in finding the value of 10 (1)/(3) xx 9(2)/(3) by using an appropriate indentity . Arrange them in sequential order . (A) (10)^(2) - ((1)/(3))^(2) = 100 - (1)/(9) (B) 10(1)/(3) xx 9(2)/(3) = (10 + (1)/(3)) (10 - (1)/(3)) (C) (10 + (1)/(3)) (10 - (1)/(3)) = (10)^(2) - ((1)/(3))^(2) [because (a + b) (a -b) = (a^(2) - b^(2))] (D) 100 - (1)/(9) = 99 + 1 - (1)/(9) = 99(8)/(9)

2(1)/(10)times1(2)/(5)=

S CHAND IIT JEE FOUNDATION-FRACTIONS AND DECIMALS-QUESTIONS BANK
  1. The square root of ((3 (1)/(4))^4-(4 (1)/(3))^4)/((3(1)/(4))^2-(4(1)/...

    Text Solution

    |

  2. The expression 3/4+5/(36)+7/(144)+\ +(17)/(5184)+(19)/(8100) is eq...

    Text Solution

    |

  3. [(1+(1)/(10+(1)/(10)))xx(1+(1)/(10+(1)/(10)))-(1-(1)/(10+(1)/(10)))xx ...

    Text Solution

    |

  4. A student was asked to simplify the following : ((3)/(1.6)+(5)/(3.2))/...

    Text Solution

    |

  5. In a school (3)/(7) of the students are girls and the rest are boys. (...

    Text Solution

    |

  6. A man first sold (2)/(3)rd of his total quantity of rice. Again he so...

    Text Solution

    |

  7. The value of 1-(1)/(20)+(1)/(20^(2))-(1)/(20^(3))+....... till 5th ter...

    Text Solution

    |

  8. (1/(1xx4)+1/(4xx7)+1/(7xx10)+1/(10xx13)+1/(13xx16))=?

    Text Solution

    |

  9. If a/b=1/3,\ b/c=2,\ c/d=1/2,\ d/e=3 and e/f=1/4 , then what is the...

    Text Solution

    |

  10. Evaluate : 515.15-15.51-1.51-5.11-1.11

    Text Solution

    |

  11. Simplify : 12.28xx1.5-36+24

    Text Solution

    |

  12. Which of the following is equal to 1? ((0. 11)^2)/((1. 1)^2xx0. 1) ...

    Text Solution

    |

  13. When the number N=0.735bar45 is written as a fraction in its lowest te...

    Text Solution

    |

  14. What is the value of (7.5xx7.5+37.5+2.5xx2.5)?

    Text Solution

    |

  15. Evalaute 0.bar14+ 0. bar19

    Text Solution

    |

  16. If 1^(3) + 2^(3)+……. +9^(3)=2025, then the approximate value of (0.11)...

    Text Solution

    |

  17. (5.42xx6+5.42xx24)/(32.71xx32.71-27.29xx27.29)+(6.54xx6.54-3.46xx3.46)...

    Text Solution

    |

  18. The value of ((67. 542)^2-(32. 458)^2)/(75. 458-40. 374) is (a) 1 (...

    Text Solution

    |

  19. The value of ((0. 1xx0. 1xx0. 1+0. 02xx0. 02xx0. 02)/(0. 2xx0. 2xx0...

    Text Solution

    |

  20. sqrt((0.798)^(2)+0.404xx0.798+(0.202)^(2))+1 is equal to

    Text Solution

    |