Home
Class 8
MATHS
Simplify : (4(1)/(7)-2(1)/(4))/(3+(1)/(2...

Simplify : `(4(1)/(7)-2(1)/(4))/(3+(1)/(2)+1(1)/(7))+(1)/(2+(1)/(2+(1)/(5-(1)/(5))))`

A

0

B

`-1`

C

`3(1)/(24)`

D

`53/65`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((4\frac{1}{7} - 2\frac{1}{4}) / (3 + \frac{1}{2} + 1\frac{1}{7}) + \frac{1}{2 + \frac{1}{2 + \frac{1}{5 - \frac{1}{5}}}}\), we will break it down into manageable parts. ### Step 1: Simplify the first part \((4\frac{1}{7} - 2\frac{1}{4})\) 1. Convert the mixed numbers to improper fractions: - \(4\frac{1}{7} = \frac{4 \times 7 + 1}{7} = \frac{29}{7}\) - \(2\frac{1}{4} = \frac{2 \times 4 + 1}{4} = \frac{9}{4}\) 2. Now we have: \[ \frac{29}{7} - \frac{9}{4} \] 3. Find the least common multiple (LCM) of the denominators (7 and 4), which is 28. 4. Convert both fractions: - \(\frac{29}{7} = \frac{29 \times 4}{7 \times 4} = \frac{116}{28}\) - \(\frac{9}{4} = \frac{9 \times 7}{4 \times 7} = \frac{63}{28}\) 5. Now subtract: \[ \frac{116}{28} - \frac{63}{28} = \frac{116 - 63}{28} = \frac{53}{28} \] ### Step 2: Simplify the denominator \((3 + \frac{1}{2} + 1\frac{1}{7})\) 1. Convert \(1\frac{1}{7}\) to an improper fraction: - \(1\frac{1}{7} = \frac{8}{7}\) 2. Now we have: \[ 3 + \frac{1}{2} + \frac{8}{7} \] 3. Convert 3 to a fraction: - \(3 = \frac{3 \times 14}{14} = \frac{42}{14}\) 4. Find the LCM of the denominators (2 and 7), which is 14. 5. Convert the fractions: - \(\frac{1}{2} = \frac{1 \times 7}{2 \times 7} = \frac{7}{14}\) - \(\frac{8}{7} = \frac{8 \times 2}{7 \times 2} = \frac{16}{14}\) 6. Now add: \[ \frac{42}{14} + \frac{7}{14} + \frac{16}{14} = \frac{42 + 7 + 16}{14} = \frac{65}{14} \] ### Step 3: Combine the results Now we have: \[ \frac{\frac{53}{28}}{\frac{65}{14}} = \frac{53}{28} \times \frac{14}{65} = \frac{53 \times 14}{28 \times 65} \] ### Step 4: Simplify the fraction 1. Simplify \(\frac{14}{28} = \frac{1}{2}\): \[ \frac{53 \times 1}{2 \times 65} = \frac{53}{130} \] ### Step 5: Simplify the second part \(\frac{1}{2 + \frac{1}{2 + \frac{1}{5 - \frac{1}{5}}}}\) 1. Simplify \(5 - \frac{1}{5} = \frac{25 - 1}{5} = \frac{24}{5}\). 2. Now simplify: \[ 2 + \frac{1}{2 + \frac{24}{5}} \] 3. Convert \(2\) to a fraction: - \(2 = \frac{10}{5}\) 4. Combine: \[ \frac{10}{5} + \frac{24}{5} = \frac{34}{5} \] 5. Now simplify: \[ 2 + \frac{1}{\frac{34}{5}} = 2 + \frac{5}{34} \] 6. Convert \(2\) to a fraction: - \(2 = \frac{68}{34}\) 7. Combine: \[ \frac{68}{34} + \frac{5}{34} = \frac{73}{34} \] 8. Now we have: \[ \frac{1}{\frac{73}{34}} = \frac{34}{73} \] ### Step 6: Combine both parts Now we have: \[ \frac{53}{130} + \frac{34}{73} \] 1. Find the LCM of 130 and 73, which is \(9490\). 2. Convert both fractions: - \(\frac{53}{130} = \frac{53 \times 73}{9490} = \frac{3869}{9490}\) - \(\frac{34}{73} = \frac{34 \times 130}{9490} = \frac{4420}{9490}\) 3. Add: \[ \frac{3869 + 4420}{9490} = \frac{8289}{9490} \] ### Final Answer Thus, the simplified expression is: \[ \frac{8289}{9490} \]
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTIONS BANK|30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos

Similar Questions

Explore conceptually related problems

1-(5)/(7+(1)/(4+(1)/(2+(1)/(3))))

(7(1)/(2)-5(3)/(4) )/(3(1)/(2)+ ? )-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6

Simplify: 5-[(3)/(4)+{2(1)/(2)-(0.5+(1)/(6)-(1)/(7))}]

Simplify :((-7)/(18)x(15)/(-7))-(1x(1)/(4))+((1)/(2)x(1)/(4))

1+(3)/(2+(1)/(4+(5)/(7)))

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]