Home
Class 8
MATHS
sqrt((0.798)^(2)+0.404xx0.798+(0.202)^(2...

`sqrt((0.798)^(2)+0.404xx0.798+(0.202)^(2))+1` is equal to

A

0

B

2

C

1.596

D

0.404

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{(0.798)^{2} + 0.404 \times 0.798 + (0.202)^{2}} + 1 \), we can follow these steps: ### Step 1: Identify the components We have: - \( A = 0.798 \) - \( B = 0.202 \) - \( 2AB = 0.404 \) ### Step 2: Rewrite the expression The expression inside the square root can be rewritten using the formula for the square of a binomial: \[ A^2 + 2AB + B^2 = (A + B)^2 \] So we can express: \[ (0.798)^2 + 0.404 \times 0.798 + (0.202)^2 = (0.798 + 0.202)^2 \] ### Step 3: Calculate \( A + B \) Now, calculate \( A + B \): \[ 0.798 + 0.202 = 1 \] ### Step 4: Substitute back into the expression Now we can substitute back into the square root: \[ \sqrt{(0.798 + 0.202)^2} + 1 = \sqrt{(1)^2} + 1 \] ### Step 5: Simplify the square root The square root of \( (1)^2 \) is: \[ \sqrt{1} = 1 \] ### Step 6: Add 1 Now, add 1 to the result: \[ 1 + 1 = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 6 |20 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos

Similar Questions

Explore conceptually related problems

{((0.1)^(2) - (0.01)^(2))/(0.0001) + 1} is equal to

(16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

sqrt( (0.25)/(0.0009) ) xx sqrt( (0.09)/(0.36)) is equal to