Home
Class 8
MATHS
The smallest of sqrt(8)+sqrt(5),sqrt(7)+...

The smallest of `sqrt(8)+sqrt(5),sqrt(7)+sqrt(6),sqrt(10)+sqrt(3)` and `sqrt(11)+sqrt(2)` is

A

`sqrt(8)+sqrt(5)`

B

`sqrt(7)+sqrt(6)`

C

`sqrt(10)+sqrt(3)`

D

`sqrt(11)+sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the smallest value among the expressions \( \sqrt{8} + \sqrt{5} \), \( \sqrt{7} + \sqrt{6} \), \( \sqrt{10} + \sqrt{3} \), and \( \sqrt{11} + \sqrt{2} \), we will calculate each expression step by step. ### Step 1: Calculate \( \sqrt{8} + \sqrt{5} \) 1. Find \( \sqrt{8} \): \[ \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \approx 2.83 \] 2. Find \( \sqrt{5} \): \[ \sqrt{5} \approx 2.24 \] 3. Add the two results: \[ \sqrt{8} + \sqrt{5} \approx 2.83 + 2.24 = 5.07 \] ### Step 2: Calculate \( \sqrt{7} + \sqrt{6} \) 1. Find \( \sqrt{7} \): \[ \sqrt{7} \approx 2.65 \] 2. Find \( \sqrt{6} \): \[ \sqrt{6} \approx 2.45 \] 3. Add the two results: \[ \sqrt{7} + \sqrt{6} \approx 2.65 + 2.45 = 5.10 \] ### Step 3: Calculate \( \sqrt{10} + \sqrt{3} \) 1. Find \( \sqrt{10} \): \[ \sqrt{10} \approx 3.16 \] 2. Find \( \sqrt{3} \): \[ \sqrt{3} \approx 1.732 \] 3. Add the two results: \[ \sqrt{10} + \sqrt{3} \approx 3.16 + 1.732 = 4.892 \approx 4.89 \] ### Step 4: Calculate \( \sqrt{11} + \sqrt{2} \) 1. Find \( \sqrt{11} \): \[ \sqrt{11} \approx 3.32 \] 2. Find \( \sqrt{2} \): \[ \sqrt{2} \approx 1.41 \] 3. Add the two results: \[ \sqrt{11} + \sqrt{2} \approx 3.32 + 1.41 = 4.73 \] ### Step 5: Compare all the results Now we have calculated: - \( \sqrt{8} + \sqrt{5} \approx 5.07 \) - \( \sqrt{7} + \sqrt{6} \approx 5.10 \) - \( \sqrt{10} + \sqrt{3} \approx 4.89 \) - \( \sqrt{11} + \sqrt{2} \approx 4.73 \) The smallest value among these is \( \sqrt{11} + \sqrt{2} \approx 4.73 \). ### Final Answer The smallest of \( \sqrt{8} + \sqrt{5}, \sqrt{7} + \sqrt{6}, \sqrt{10} + \sqrt{3} \), and \( \sqrt{11} + \sqrt{2} \) is \( \sqrt{11} + \sqrt{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 6 |20 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos

Similar Questions

Explore conceptually related problems

Which of the following surd is the smallest ? sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)

The greatest among sqrt(7) - sqrt(5) , sqrt(5) - sqrt(3) , sqrt(9) - sqrt(7) , sqrt(11) - sqrt(9) is

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?

The value of (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9)) is

If x=3-sqrt(7),y=sqrt(8)-sqrt(6),z=sqrt(7)-sqrt(5) then

The value of (2sqrt(10))/(sqrt(5)+sqrt(2)-sqrt(7))-sqrt((sqrt(5)-2)/(sqrt(5)+2))-3/(sqrt(7)-2) is