Home
Class 8
MATHS
([(625)^(1//2) xx (1024)^(1//5) ]^(1//2)...

`([(625)^(1//2) xx (1024)^(1//5) ]^(1//2))/([(root(4)(256))^(1//2)] xx (125)^(1//3))` equals

A

`1/5`

B

`1/(125)`

C

1

D

`1/10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{([(625)^{\frac{1}{2}} \times (1024)^{\frac{1}{5}}]^{\frac{1}{2}})}{([( \sqrt[4]{256})^{\frac{1}{2}}] \times (125)^{\frac{1}{3}})}\), we will simplify it step by step. ### Step 1: Simplify \(625\) and \(1024\) - \(625 = 25^2 = (5^2)^2 = 5^4\) - \(1024 = 2^{10}\) ### Step 2: Rewrite the expression Now, substituting these values into the expression, we have: \[ \frac{([(5^4)^{\frac{1}{2}} \times (2^{10})^{\frac{1}{5}}]^{\frac{1}{2}})}{([( \sqrt[4]{256})^{\frac{1}{2}}] \times (125)^{\frac{1}{3}})} \] ### Step 3: Simplify the powers - For \(625\): \[ (5^4)^{\frac{1}{2}} = 5^{4 \times \frac{1}{2}} = 5^2 \] - For \(1024\): \[ (2^{10})^{\frac{1}{5}} = 2^{10 \times \frac{1}{5}} = 2^2 \] ### Step 4: Combine the results Now we combine these results: \[ 5^2 \times 2^2 = 25 \times 4 = 100 \] ### Step 5: Apply the outer power Now we apply the outer power: \[ (100)^{\frac{1}{2}} = \sqrt{100} = 10 \] ### Step 6: Simplify the denominator Now let's simplify the denominator: - \(256 = 2^8\), so: \[ \sqrt[4]{256} = (2^8)^{\frac{1}{4}} = 2^{8 \times \frac{1}{4}} = 2^2 = 4 \] - For \(125\): \[ 125 = 5^3 \implies (125)^{\frac{1}{3}} = (5^3)^{\frac{1}{3}} = 5^{3 \times \frac{1}{3}} = 5^1 = 5 \] ### Step 7: Combine the denominator Now we combine these results: \[ 4^{\frac{1}{2}} \times 5 = 2 \times 5 = 10 \] ### Step 8: Final Calculation Now we have the final expression: \[ \frac{10}{10} = 1 \] ### Final Answer Hence, the required answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK |35 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

4xx(256)^((-1)/4) div (243)^(1/5)=

Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1/4))

[(2/5)^(-1)xx(3/4)^(-1)]^(-1)

Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64)))) .

1(2)/3 xx 1(3)/5 is equal to

Simplify: ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to: