Home
Class 8
MATHS
If a = (sqrt(5) + sqrt(4))^(-3) and b = ...

If `a = (sqrt(5) + sqrt(4))^(-3)` and `b = (sqrt(5) - sqrt(4))^(-3)`, then the value of: `(a+1)^(-1) + (b+1)^(-1)` is:

A

`20sqrt(5)`

B

4

C

1

D

`16sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the given values of \( a \) and \( b \): 1. **Given Values**: \[ a = (\sqrt{5} + \sqrt{4})^{-3} \] \[ b = (\sqrt{5} - \sqrt{4})^{-3} \] 2. **Finding \( (a + 1)^{-1} + (b + 1)^{-1} \)**: We can rewrite the expression as: \[ (a + 1)^{-1} + (b + 1)^{-1} = \frac{1}{a + 1} + \frac{1}{b + 1} \] To combine these fractions, we need a common denominator: \[ = \frac{b + 1 + a + 1}{(a + 1)(b + 1)} = \frac{a + b + 2}{(a + 1)(b + 1)} \] 3. **Calculating \( a \cdot b \)**: We can find \( a \cdot b \): \[ a \cdot b = (\sqrt{5} + \sqrt{4})^{-3} \cdot (\sqrt{5} - \sqrt{4})^{-3} \] This can be simplified using the difference of squares: \[ = \left((\sqrt{5} + \sqrt{4})(\sqrt{5} - \sqrt{4})\right)^{-3} = (5 - 4)^{-3} = 1^{-3} = 1 \] 4. **Finding \( a + b \)**: We know that: \[ a + b = (\sqrt{5} + \sqrt{4})^{-3} + (\sqrt{5} - \sqrt{4})^{-3} \] We can express this as: \[ a + b = \frac{1}{(\sqrt{5} + \sqrt{4})^3} + \frac{1}{(\sqrt{5} - \sqrt{4})^3} \] To find a common denominator: \[ = \frac{(\sqrt{5} - \sqrt{4})^3 + (\sqrt{5} + \sqrt{4})^3}{((\sqrt{5} + \sqrt{4})(\sqrt{5} - \sqrt{4}))^3} \] The numerator can be simplified using the identity for the sum of cubes: \[ = \frac{(a + b)(a^2 - ab + b^2)}{(1)^3} = a + b \] 5. **Final Calculation**: Now we can substitute \( a + b \) and \( a \cdot b \) into our expression: \[ = \frac{a + b + 2}{(a + 1)(b + 1)} \] Since \( ab = 1 \): \[ (a + 1)(b + 1) = ab + a + b = 1 + (a + b) \] Thus, our expression simplifies to: \[ = \frac{a + b + 2}{1 + (a + b)} \] If we let \( x = a + b \), we have: \[ = \frac{x + 2}{x + 1} \] Since \( x = 1 \) (from previous calculations), we get: \[ = \frac{1 + 2}{1 + 1} = \frac{3}{2} \] 6. **Final Answer**: The value of \( (a + 1)^{-1} + (b + 1)^{-1} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK |35 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

If a=(sqrt(3)+sqrt(2))^(-3) and b=(5-2sqrt(6))^(-(3)/(2)) then the value of (a+1)^(-1)+(b+1)^(-1) is

If a=(sqrt(3)+sqrt(2))^(-3) and b=(5-2sqrt(6))^(-(3)/(2)). then the value of (a+1)^(-1)+(b+1)^(-1) is

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)

if (4+3sqrt(5))/(sqrt(5))=a+b sqrt(5) then the value of b is

If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt(5)-1)/(sqrt(5)+1), the value of ((a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))) is (3)/(4) (b) (4)/(3)(c)(3)/(5)(d)(5)/(3)