Home
Class 8
MATHS
If x=8 + 2sqrt(15), then the value of sq...

If `x=8 + 2sqrt(15)`, then the value of `sqrt(x) + 1/sqrt(x)` is:

A

`2sqrt(3)`

B

`2sqrt(5)`

C

`3/2sqrt(5)+ sqrt(3)/2`

D

`sqrt(5)/2 + 3/2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 8 + 2\sqrt{15} \) and we need to find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we can follow these steps: ### Step 1: Find \( \sqrt{x} \) Given: \[ x = 8 + 2\sqrt{15} \] We can express \( \sqrt{x} \) in a simpler form. We assume: \[ \sqrt{x} = \sqrt{a} + \sqrt{b} \] We need to find \( a \) and \( b \) such that: \[ x = a + b + 2\sqrt{ab} \] By comparing with \( 8 + 2\sqrt{15} \), we can set: 1. \( a + b = 8 \) 2. \( 2\sqrt{ab} = 2\sqrt{15} \) From the second equation, we can simplify: \[ \sqrt{ab} = \sqrt{15} \] Squaring both sides gives: \[ ab = 15 \] ### Step 2: Solve for \( a \) and \( b \) Now we have a system of equations: 1. \( a + b = 8 \) 2. \( ab = 15 \) We can use these equations to form a quadratic equation: Let \( t = a \) and \( b = 8 - t \). Then: \[ t(8 - t) = 15 \] This simplifies to: \[ 8t - t^2 = 15 \] Rearranging gives: \[ t^2 - 8t + 15 = 0 \] ### Step 3: Factor the quadratic equation Now we can factor the quadratic: \[ (t - 3)(t - 5) = 0 \] Thus, the solutions are: \[ t = 3 \quad \text{or} \quad t = 5 \] So, we have: - \( a = 3 \) and \( b = 5 \) or - \( a = 5 \) and \( b = 3 \) ### Step 4: Find \( \sqrt{x} \) Thus: \[ \sqrt{x} = \sqrt{3} + \sqrt{5} \] ### Step 5: Find \( \frac{1}{\sqrt{x}} \) Now we need to find \( \frac{1}{\sqrt{x}} \): \[ \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{3} + \sqrt{5}} \] To simplify this, we multiply the numerator and denominator by the conjugate: \[ \frac{\sqrt{3} - \sqrt{5}}{(\sqrt{3} + \sqrt{5})(\sqrt{3} - \sqrt{5})} \] The denominator becomes: \[ (\sqrt{3})^2 - (\sqrt{5})^2 = 3 - 5 = -2 \] Thus: \[ \frac{1}{\sqrt{x}} = \frac{\sqrt{3} - \sqrt{5}}{-2} = \frac{\sqrt{5} - \sqrt{3}}{2} \] ### Step 6: Combine \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) Now we can find: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \left(\sqrt{3} + \sqrt{5}\right) + \left(\frac{\sqrt{5} - \sqrt{3}}{2}\right) \] Finding a common denominator (which is 2): \[ = \frac{2(\sqrt{3} + \sqrt{5})}{2} + \frac{\sqrt{5} - \sqrt{3}}{2} \] \[ = \frac{2\sqrt{3} + 2\sqrt{5} + \sqrt{5} - \sqrt{3}}{2} \] \[ = \frac{(2\sqrt{3} - \sqrt{3}) + (2\sqrt{5} + \sqrt{5})}{2} \] \[ = \frac{\sqrt{3} + 3\sqrt{5}}{2} \] ### Final Result Thus, the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ \frac{\sqrt{3} + 3\sqrt{5}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise SELF-ASSESSMENT SHEET -6|10 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If x=3+2sqrt(2), then the value of (sqrt(x)-(1)/(sqrt(x))) is

If x=4-sqrt(15), find the value of (sqrt(x)+(1)/(sqrt(x)))

If x=6+2sqrt(6), then what is the value of sqrt(x-1)+(1)/(sqrt(x-1))

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

Find the value of sqrt(x)-(1)/(sqrt(x)) if x=3+2sqrt(2)

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

S CHAND IIT JEE FOUNDATION-SURDS -QUESTION BANK -6
  1. The simplified form of ( 2)/(sqrt(7) + sqrt(5)) + (7)/(sqrt(12)- sqrt...

    Text Solution

    |

  2. Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) i...

    Text Solution

    |

  3. If x=8 + 2sqrt(15), then the value of sqrt(x) + 1/sqrt(x) is:

    Text Solution

    |

  4. 1+(4sqrt(3))/(2-sqrt(2)) -30/(4sqrt(3)-sqrt(18)) - sqrt(18)/(3+2sqrt(3...

    Text Solution

    |

  5. Given that: sqrt(3)=1.732, then (sqrt(147) -1/4sqrt(48) -sqrt(75)) is ...

    Text Solution

    |

  6. If sqrt(6) =2.55, then the value of sqrt(2/3) + sqrt(3/2) is:

    Text Solution

    |

  7. The value of sqrt(5 sqrt(5 sqrt(5)...)) is

    Text Solution

    |

  8. The value of 1/(sqrt(3.25) + sqrt(2.25)) + 1/(sqrt(4.25) + sqrt(3.25))...

    Text Solution

    |

  9. If sqrt(2)=1. 414 , the square root of (sqrt(2)-1)/(sqrt(2)+1) is n...

    Text Solution

    |

  10. The value of 1/(sqrt(12-sqrt(140)))-1/(sqrt(8-sqrt(60)))-2/(sqrt(10+sq...

    Text Solution

    |

  11. sqrt(2+sqrt(2+sqrt(2+\ dot))) is equal to (a) 1 (b) 1.5 (c) 2 (d) 2.5

    Text Solution

    |

  12. The value of sqrt32 - sqrt128 + sqrt50 correct to 3 places of decimal...

    Text Solution

    |

  13. The value of sqrt(( sqrt(12) -sqrt(8))(sqrt(3)+sqrt(2))/(5+sqrt(24))...

    Text Solution

    |

  14. What is the sum of the square of the following numbers? sqrt(3)/(sq...

    Text Solution

    |

  15. Which is the odd one out of the following?

    Text Solution

    |

  16. If a=(sqrt(3)+sqrt(2))^(- 3) and b=(5-2sqrt(6))^(- 3/2) then the valu...

    Text Solution

    |

  17. By how much does 5sqrt(7) - 2sqrt(5) exceed 3sqrt(7) - 4sqrt(5) ?

    Text Solution

    |

  18. If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt(5)-1)/(sqrt(5)+1) , the value...

    Text Solution

    |

  19. Given that sqrt(3) = 1.732, the value of (3 + sqrt(6 ))/( 5 sqrt(3) -...

    Text Solution

    |

  20. The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3...

    Text Solution

    |