Home
Class 8
MATHS
(sqrt(31) - sqrt(29))/(sqrt(31) + sqrt(2...

`(sqrt(31) - sqrt(29))/(sqrt(31) + sqrt(29))` equals:

A

`60 - 2sqrt(899)`

B

`30 - sqrt(899)`

C

`30 + sqrt(899)`

D

`1/(30 - sqrt(899))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{31} - \sqrt{29}) / (\sqrt{31} + \sqrt{29})\), we can simplify it using the technique of multiplying by the conjugate. Here’s a step-by-step solution: ### Step 1: Multiply by the Conjugate We multiply the numerator and the denominator by the conjugate of the denominator, which is \((\sqrt{31} - \sqrt{29})\). \[ \frac{\sqrt{31} - \sqrt{29}}{\sqrt{31} + \sqrt{29}} \cdot \frac{\sqrt{31} - \sqrt{29}}{\sqrt{31} - \sqrt{29}} = \frac{(\sqrt{31} - \sqrt{29})^2}{(\sqrt{31} + \sqrt{29})(\sqrt{31} - \sqrt{29})} \] ### Step 2: Simplify the Numerator Now, we simplify the numerator using the identity \((a - b)^2 = a^2 - 2ab + b^2\): \[ (\sqrt{31} - \sqrt{29})^2 = (\sqrt{31})^2 - 2(\sqrt{31})(\sqrt{29}) + (\sqrt{29})^2 = 31 - 2\sqrt{31 \cdot 29} + 29 \] Combining the constants: \[ 31 + 29 - 2\sqrt{31 \cdot 29} = 60 - 2\sqrt{899} \] ### Step 3: Simplify the Denominator Now, we simplify the denominator using the difference of squares identity: \[ (\sqrt{31} + \sqrt{29})(\sqrt{31} - \sqrt{29}) = (\sqrt{31})^2 - (\sqrt{29})^2 = 31 - 29 = 2 \] ### Step 4: Combine the Results Now we can combine the results from the numerator and the denominator: \[ \frac{60 - 2\sqrt{899}}{2} \] ### Step 5: Simplify the Fraction We can simplify the fraction by dividing each term in the numerator by 2: \[ 30 - \sqrt{899} \] ### Final Answer Thus, the expression \((\sqrt{31} - \sqrt{29}) / (\sqrt{31} + \sqrt{29})\) simplifies to: \[ 30 - \sqrt{899} \] ---
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -6|25 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to:

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then a+(1)/(a) is equal to

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals