Home
Class 8
MATHS
The expression ((5sqrt(3) + sqrt(50))(5-...

The expression `((5sqrt(3) + sqrt(50))(5-sqrt(24)))/(sqrt(75) - 5sqrt(2))` simplifies to

A

1

B

`sqrt(3) - sqrt(2)`

C

`sqrt(6) - sqrt(5)`

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(5\sqrt{3} + \sqrt{50})(5 - \sqrt{24})}{\sqrt{75} - 5\sqrt{2}}\), we will follow these steps: ### Step 1: Simplify \(\sqrt{50}\) and \(\sqrt{75}\) - \(\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}\) - \(\sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \cdot \sqrt{3} = 5\sqrt{3}\) ### Step 2: Substitute back into the expression Now we can rewrite the expression: \[ \frac{(5\sqrt{3} + 5\sqrt{2})(5 - \sqrt{24})}{5\sqrt{3} - 5\sqrt{2}} \] ### Step 3: Factor out the common term We can factor out \(5\) from the numerator and denominator: \[ = \frac{5(\sqrt{3} + \sqrt{2})(5 - \sqrt{24})}{5(\sqrt{3} - \sqrt{2})} \] This simplifies to: \[ = \frac{(\sqrt{3} + \sqrt{2})(5 - \sqrt{24})}{\sqrt{3} - \sqrt{2}} \] ### Step 4: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \((\sqrt{3} + \sqrt{2})\): \[ = \frac{(\sqrt{3} + \sqrt{2})^2 (5 - \sqrt{24})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] ### Step 5: Simplify the denominator Using the difference of squares: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] So the denominator simplifies to \(1\). ### Step 6: Expand the numerator Now we expand the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2 \cdot \sqrt{3} \cdot \sqrt{2} + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Thus, the numerator becomes: \[ (5 + 2\sqrt{6})(5 - \sqrt{24}) \] ### Step 7: Simplify \(\sqrt{24}\) We know that \(\sqrt{24} = 2\sqrt{6}\), so: \[ (5 + 2\sqrt{6})(5 - 2\sqrt{6}) \] ### Step 8: Use the difference of squares Now apply the difference of squares: \[ = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Final Result Thus, the simplified value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -6|25 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

Simplify (sqrt(3)+sqrt(2))/(sqrt(5)-sqrt(2))

((1+sqrt2)/(sqrt5+sqrt3) + (1-sqrt2)/(sqrt5-sqrt3)) simplifies to :

simplify the expression (sqrt(2)+sqrt(3))/(sqrt(3)+sqrt(2))

Simplify (sqrt(5)+sqrt(2))(sqrt(3)+sqrt(2))

The expression (sqrt(5)-sqrt(3))(sqrt(7)-sqrt(2)) when simplified becomes a

Multiply : (sqrt(3)+sqrt(2)) (5sqrt(2)+sqrt(3))

Simplify the following expressions: (3+sqrt(3))(3-sqrt(3))( ii) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)