Home
Class 8
MATHS
If (1/sqrt(9) - 1/sqrt(11))/(1/sqrt(9) +...

If `(1/sqrt(9) - 1/sqrt(11))/(1/sqrt(9) + 1/sqrt(11)) xx (10 + sqrt(99))/x =1/2`, then x equal

A

2

B

3

C

10

D

`1//10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\frac{1}{\sqrt{9}} - \frac{1}{\sqrt{11}}}{\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{11}}} \cdot \frac{10 + \sqrt{99}}{x} = \frac{1}{2}, \] we will follow these steps: ### Step 1: Simplify the fractions First, we simplify the fractions in the equation. \[ \frac{1}{\sqrt{9}} = \frac{1}{3}, \quad \text{and} \quad \frac{1}{\sqrt{11}} = \frac{1}{\sqrt{11}}. \] So, we can rewrite the equation as: \[ \frac{\frac{1}{3} - \frac{1}{\sqrt{11}}}{\frac{1}{3} + \frac{1}{\sqrt{11}}} \cdot \frac{10 + \sqrt{99}}{x} = \frac{1}{2}. \] ### Step 2: Multiply by the conjugate To simplify the fraction, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{\left(\frac{1}{3} - \frac{1}{\sqrt{11}}\right) \left(\frac{1}{3} - \frac{1}{\sqrt{11}}\right)}{\left(\frac{1}{3} + \frac{1}{\sqrt{11}}\right) \left(\frac{1}{3} - \frac{1}{\sqrt{11}}\right)}. \] This results in: \[ \frac{\left(\frac{1}{3} - \frac{1}{\sqrt{11}}\right)^2}{\left(\frac{1}{3}\right)^2 - \left(\frac{1}{\sqrt{11}}\right)^2}. \] ### Step 3: Calculate the squares Calculating the squares gives: \[ \left(\frac{1}{3} - \frac{1}{\sqrt{11}}\right)^2 = \frac{1}{9} - 2 \cdot \frac{1}{3 \sqrt{11}} + \frac{1}{11}, \] and \[ \left(\frac{1}{3}\right)^2 - \left(\frac{1}{\sqrt{11}}\right)^2 = \frac{1}{9} - \frac{1}{11}. \] ### Step 4: Find a common denominator The common denominator for \(9\) and \(11\) is \(99\). Thus, \[ \frac{1}{9} = \frac{11}{99}, \quad \text{and} \quad \frac{1}{11} = \frac{9}{99}. \] So, \[ \frac{1}{9} - \frac{1}{11} = \frac{11 - 9}{99} = \frac{2}{99}. \] ### Step 5: Substitute back into the equation Now we substitute back into the equation: \[ \frac{\frac{1}{9} - 2 \cdot \frac{1}{3 \sqrt{11}} + \frac{1}{11}}{\frac{2}{99}} \cdot \frac{10 + \sqrt{99}}{x} = \frac{1}{2}. \] ### Step 6: Solve for x Cross-multiplying gives: \[ \left(\frac{1}{9} - 2 \cdot \frac{1}{3 \sqrt{11}} + \frac{1}{11}\right) \cdot (10 + \sqrt{99}) = \frac{1}{2} \cdot \frac{2}{99} \cdot x. \] ### Step 7: Simplify further After simplifying, we find: \[ x = 2. \] ### Final Answer Thus, the value of \(x\) is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -6|25 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

(sqrt(11)+sqrt(2))/(9)=

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

a=9-4sqrt(5),sqrt(a)-(1)/(sqrt(a))=?

Choose the correct value of (1)/(sqrt(9)+sqrt(10))+(1)/(sqrt(10)+sqrt(11))+(1)/(sqrt(11)+sqrt(12))+ upto 91 terms from the following options

int_(4)^(9)(1)/(sqrt(x)(1+sqrt(x))dx)

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1