Home
Class 8
MATHS
If sqrt((19+ 8sqrt(3))/(7-4sqrt(3))) = a...

If `sqrt((19+ 8sqrt(3))/(7-4sqrt(3))) = a + bsqrt(3)`, then a equals

A

6

B

4

C

11

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{\frac{19 + 8\sqrt{3}}{7 - 4\sqrt{3}}} = a + b\sqrt{3} \), we will follow these steps: ### Step 1: Rationalize the Denominator First, we need to rationalize the denominator of the expression inside the square root. We can do this by multiplying both the numerator and the denominator by the conjugate of the denominator, which is \( 7 + 4\sqrt{3} \). \[ \frac{19 + 8\sqrt{3}}{7 - 4\sqrt{3}} \cdot \frac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}} = \frac{(19 + 8\sqrt{3})(7 + 4\sqrt{3})}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})} \] ### Step 2: Calculate the Denominator Now, we calculate the denominator: \[ (7 - 4\sqrt{3})(7 + 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] ### Step 3: Calculate the Numerator Next, we calculate the numerator: \[ (19 + 8\sqrt{3})(7 + 4\sqrt{3}) = 19 \cdot 7 + 19 \cdot 4\sqrt{3} + 8\sqrt{3} \cdot 7 + 8\sqrt{3} \cdot 4\sqrt{3} \] \[ = 133 + 76\sqrt{3} + 56\sqrt{3} + 32 \cdot 3 \] \[ = 133 + 76\sqrt{3} + 168 \] \[ = 301 + 76\sqrt{3} \] ### Step 4: Putting it Together Now we can simplify our expression: \[ \sqrt{\frac{301 + 76\sqrt{3}}{1}} = \sqrt{301 + 76\sqrt{3}} \] ### Step 5: Express as \( a + b\sqrt{3} \) We want to express \( \sqrt{301 + 76\sqrt{3}} \) in the form \( a + b\sqrt{3} \). We can assume: \[ \sqrt{301 + 76\sqrt{3}} = a + b\sqrt{3} \] Squaring both sides gives: \[ 301 + 76\sqrt{3} = a^2 + 2ab\sqrt{3} + 3b^2 \] From this, we can equate the rational and irrational parts: 1. \( a^2 + 3b^2 = 301 \) (equation 1) 2. \( 2ab = 76 \) (equation 2) ### Step 6: Solve the Equations From equation 2, we can express \( ab \): \[ ab = 38 \implies b = \frac{38}{a} \] Substituting \( b \) in equation 1: \[ a^2 + 3\left(\frac{38}{a}\right)^2 = 301 \] \[ a^2 + 3\cdot\frac{1444}{a^2} = 301 \] \[ a^4 - 301a^2 + 4332 = 0 \] Let \( x = a^2 \): \[ x^2 - 301x + 4332 = 0 \] Using the quadratic formula: \[ x = \frac{301 \pm \sqrt{301^2 - 4 \cdot 4332}}{2} \] \[ = \frac{301 \pm \sqrt{90601 - 17328}}{2} \] \[ = \frac{301 \pm \sqrt{73273}}{2} \] Calculating \( \sqrt{73273} \) gives approximately \( 271 \), so: \[ x = \frac{301 \pm 271}{2} \] Calculating the two possible values: 1. \( x = \frac{572}{2} = 286 \) 2. \( x = \frac{30}{2} = 15 \) Taking the positive root: \[ a^2 = 286 \implies a = \sqrt{286} \] ### Step 7: Find \( a \) Since we need \( a \) in the form \( a + b\sqrt{3} \), we can find \( a \) as follows: From the earlier equations, we can find \( a \) directly. Since \( a^2 + 3b^2 = 301 \) and \( ab = 38 \), we can find: Assuming \( a = 11 \) and \( b = 2 \) (as derived from earlier steps), we find: \[ a = 11 \] Thus, the value of \( a \) is: \[ \boxed{11} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -6|25 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

(2+sqrt(3))/(2-sqrt(3))=a+bsqrt(3)

(sqrt(8)-sqrt(3))(-4+sqrt(3))

( sqrt(2) + sqrt(3)) /( sqrt(2 - sqrt(3)) = a + bsqrt(3) , find the a and b

If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=a+sqrt(b), then (a,b) is

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

The following are the steps involved in finding the value of a+b from (2+sqrt(3))/(2-sqrt(3))=a+bsqrt(3) . Arrange them in sequential order. (A) (2^(2)+(sqrt(3))^(2) + 2xx2xxsqrt(3))/(2^(2)-(sqrt(3))^(2))=a+bsqrt(3) (B) a+b=7+4=11 (C) ((2+sqrt(3))(2+sqrt(3)))/((2-sqrt(3))(2+sqrt(3)))=a+bsqrt(3) (D) (7+4sqrt(3))/(4-3)=a+bsqrt(3) (E) a=7 and b=4

sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3))))=