Home
Class 8
MATHS
((sqrt(2)-1)/(sqrt(2) +1) + (sqrt(2) +1)...

`((sqrt(2)-1)/(sqrt(2) +1) + (sqrt(2) +1)/(sqrt(2)-1))/((sqrt(3)-1)/(sqrt(3)+1) + (sqrt(3) +1)/(sqrt(3)-1))` equals:

A

`2/3`

B

4

C

`3/2`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\left(\frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{2}+1}{\sqrt{2}-1}\right)}{\left(\frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1}\right)}, \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplify the Numerator The numerator is \[ \frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{2}+1}{\sqrt{2}-1}. \] To combine these fractions, we will find a common denominator. The common denominator is \((\sqrt{2}+1)(\sqrt{2}-1)\). Now, we can rewrite the expression: \[ \frac{(\sqrt{2}-1)^2 + (\sqrt{2}+1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)}. \] ### Step 2: Expand the Numerator Now, we will expand \((\sqrt{2}-1)^2\) and \((\sqrt{2}+1)^2\): \[ (\sqrt{2}-1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}, \] \[ (\sqrt{2}+1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}. \] Adding these two results gives: \[ (3 - 2\sqrt{2}) + (3 + 2\sqrt{2}) = 6. \] ### Step 3: Simplify the Denominator Now, we will simplify the denominator: \[ \frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1}. \] Similarly, we find a common denominator, which is \((\sqrt{3}+1)(\sqrt{3}-1)\): \[ \frac{(\sqrt{3}-1)^2 + (\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}. \] ### Step 4: Expand the Denominator Now, we will expand \((\sqrt{3}-1)^2\) and \((\sqrt{3}+1)^2\): \[ (\sqrt{3}-1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3}, \] \[ (\sqrt{3}+1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3}. \] Adding these two results gives: \[ (4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) = 8. \] ### Step 5: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{6}{(\sqrt{2}+1)(\sqrt{2}-1)} \div \frac{8}{(\sqrt{3}+1)(\sqrt{3}-1)}. \] This simplifies to: \[ \frac{6}{8} \cdot \frac{(\sqrt{3}+1)(\sqrt{3}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{3}{4} \cdot \frac{(\sqrt{3}+1)(\sqrt{3}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}. \] ### Step 6: Calculate the Final Value Now, we know that: \[ (\sqrt{3}+1)(\sqrt{3}-1) = 3 - 1 = 2, \] \[ (\sqrt{2}+1)(\sqrt{2}-1) = 2 - 1 = 1. \] Thus, we have: \[ \frac{3}{4} \cdot \frac{2}{1} = \frac{3 \cdot 2}{4} = \frac{6}{4} = \frac{3}{2}. \] ### Final Answer The final answer is \[ \frac{3}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -1 |15 Videos
  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK -6|25 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

1+2sqrt(3)-1sqrt(3)

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)is

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

x=(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+2)=

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))