Home
Class 8
MATHS
The value of sqrt(a sqrt(b sqrt(c sqrt(d...

The value of `sqrt(a sqrt(b sqrt(c sqrt(d))))` is:

A

`a^(1//2) b^(1//2) c^(1//2) d^(1//2)`

B

`a^(1//2) b^(1/2) c^(1//8) d^(1//16)`

C

`(abcd)^(1//12)`

D

`(abcd)^(1//8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{a \sqrt{b \sqrt{c \sqrt{d}}}} \), we can simplify the expression step by step. ### Step 1: Rewrite the square roots in exponential form We know that \( \sqrt{x} = x^{1/2} \). Therefore, we can rewrite the expression as: \[ \sqrt{a \sqrt{b \sqrt{c \sqrt{d}}}} = (a \sqrt{b \sqrt{c \sqrt{d}}})^{1/2} \] ### Step 2: Simplify the inner square root Next, we simplify the inner square root \( \sqrt{b \sqrt{c \sqrt{d}}} \): \[ \sqrt{b \sqrt{c \sqrt{d}}} = (b \sqrt{c \sqrt{d}})^{1/2} \] Now, we can further simplify \( \sqrt{c \sqrt{d}} \): \[ \sqrt{c \sqrt{d}} = (c \sqrt{d})^{1/2} \] Continuing, we simplify \( \sqrt{d} \): \[ \sqrt{d} = d^{1/2} \] Thus, we have: \[ \sqrt{c \sqrt{d}} = (c \cdot d^{1/2})^{1/2} = c^{1/2} \cdot d^{1/4} \] Putting this back, we have: \[ \sqrt{b \sqrt{c \sqrt{d}}} = (b \cdot c^{1/2} \cdot d^{1/4})^{1/2} = b^{1/2} \cdot c^{1/4} \cdot d^{1/8} \] ### Step 3: Substitute back into the original expression Now substituting this back into our expression gives: \[ \sqrt{a \sqrt{b \sqrt{c \sqrt{d}}}} = (a \cdot b^{1/2} \cdot c^{1/4} \cdot d^{1/8})^{1/2} \] ### Step 4: Apply the exponent Using the property of exponents, we can distribute the \( 1/2 \): \[ = a^{1/2} \cdot b^{1/4} \cdot c^{1/8} \cdot d^{1/16} \] ### Final Result Thus, the value of \( \sqrt{a \sqrt{b \sqrt{c \sqrt{d}}}} \) is: \[ a^{1/2} \cdot b^{1/4} \cdot c^{1/8} \cdot d^{1/16} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise SELF-ASSESSMENT SHEET -6|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(5+2sqrt(6)) is sqrt(3)-sqrt(2)(b)sqrt(3)+sqrt(2)(c)sqrt(5)+sqrt(6)(d) none of these

In /_\ABC ,the minimum value of Sigma((sqrt(a))/(sqrt(b)+sqrt(c)-sqrt(a))) is

The value of sqrt(6+sqrt(6+sqrt(6+)))......... is 4(b)3(c)-2(d)3.5

If the value of sin9^(@) is expressed in the form of (sqrt(a+sqrt(c))-sqrt(c-sqrt(c)))/(b) , where a,b,c are co- prime natural numbers then find a, b and c

Let a,b,c,d,A,B,C,D in R . If A/a = B/b = C/c = D/d then (sqrt(Aa) + sqrt(Bb) + sqrt(Cc) + sqrt(Dd)) / (sqrt(a+b+c+d) sqrt(A+B+C+D))=

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

Given sqrt(2)=1.414. The value of sqrt(8)+2sqrt(32)-3sqrt(128)+4sqrt(50) is (a) 8.426 (b) 8.484(c)8.526 (d) 8.876

The value of (sqrt(48)+sqrt(32))/(sqrt(27)+sqrt(18)) is (4)/(3)(b)4(c)3(c)(3)/(4)