Home
Class 8
MATHS
Simplified value of: {(4^(m+1/4) xx sqrt...

Simplified value of: `{(4^(m+1/4) xx sqrt(2.2^(m)))/(2sqrt(2^(-m)))}^(1//m)` is:

A

8

B

4

C

16

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{4^{m + \frac{1}{4}} \times \sqrt{2 \cdot 2^{m}}}{2 \sqrt{2^{-m}}}\right)^{\frac{1}{m}}\), we can follow these steps: ### Step 1: Rewrite the base in terms of powers of 2 We know that \(4 = 2^2\). Therefore, we can rewrite \(4^{m + \frac{1}{4}}\) as: \[ 4^{m + \frac{1}{4}} = (2^2)^{m + \frac{1}{4}} = 2^{2(m + \frac{1}{4})} = 2^{2m + \frac{1}{2}} \] ### Step 2: Simplify the square root term Next, we simplify \(\sqrt{2 \cdot 2^{m}}\): \[ \sqrt{2 \cdot 2^{m}} = \sqrt{2^{1 + m}} = 2^{\frac{1 + m}{2}} \] ### Step 3: Simplify the denominator Now, we simplify the denominator \(2 \sqrt{2^{-m}}\): \[ 2 \sqrt{2^{-m}} = 2 \cdot 2^{-\frac{m}{2}} = 2^{1 - \frac{m}{2}} \] ### Step 4: Combine the terms in the numerator Now we can combine the terms in the numerator: \[ \text{Numerator} = 2^{2m + \frac{1}{2}} \times 2^{\frac{1 + m}{2}} = 2^{(2m + \frac{1}{2}) + (\frac{1 + m}{2})} \] Calculating the exponent: \[ 2m + \frac{1}{2} + \frac{1 + m}{2} = 2m + \frac{1}{2} + \frac{1}{2} + \frac{m}{2} = 2m + \frac{1 + 1}{2} + \frac{m}{2} = 2m + 1 + \frac{m}{2} = \frac{4m + 2 + m}{2} = \frac{5m + 2}{2} \] Thus, the numerator simplifies to: \[ \text{Numerator} = 2^{\frac{5m + 2}{2}} \] ### Step 5: Combine the entire fraction Now we can write the entire expression: \[ \frac{2^{\frac{5m + 2}{2}}}{2^{1 - \frac{m}{2}}} = 2^{\frac{5m + 2}{2} - (1 - \frac{m}{2})} \] Calculating the exponent: \[ \frac{5m + 2}{2} - 1 + \frac{m}{2} = \frac{5m + 2 - 2 + m}{2} = \frac{6m}{2} = 3m \] So, the entire fraction simplifies to: \[ 2^{3m} \] ### Step 6: Apply the exponent \(\frac{1}{m}\) Now we apply the exponent \(\frac{1}{m}\): \[ (2^{3m})^{\frac{1}{m}} = 2^{3} \] ### Step 7: Final calculation Finally, we calculate \(2^3\): \[ 2^3 = 8 \] ### Conclusion Thus, the simplified value of the expression is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS

    S CHAND IIT JEE FOUNDATION|Exercise SELF-ASSESSMENT SHEET -6|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos
  • TIME AND WORK

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 20|10 Videos

Similar Questions

Explore conceptually related problems

What is the simplified value of [(4^(m+1/4) xx sqrt(2 xx 2^(m)))/(2sqrt(2^(-m)))]^(1/m) ?

Simplify: (((4)^(M+(1)/(4))xx sqrt(2xx2^(m)))/(2sqrt(2^(-M))))^((1)/(M))*(-1)^(64)

What is the value of m ,if sqrt(12^(3m-2))=12^(2)

find the value of m,(sqrt(m+1)+sqrt(m-1))/(sqrt(m+1)-sqrt(m-1))=2m-(1)/(2)

Find the value of (-4m)^(3) div (1)/((2m)^(2))

Find the values of m and n if: 4^(2m)=(3sqrt(16))^(-(6)/(n))=(sqrt(8))^(2)

Find the value of int((x^m-1)dx)/(x^(m+1)sqrt(1-2x^m+mx^(2m))) (A) sqrt(m+2/x^m+1/x^(2m)+c) (B) sqrt(m-2/x^m+1/x^(2m)+c) (C) sqrt(m-2/x^m-1/x^(2m)+c) (D) sqrt(m+2/x^m-1/x^(2m)+c)

If the maximum and minimum values of (sin x)/(sqrt(1-cos^(2)))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(cos ec^(2)-1)) when it is defined are M and m respectively then the values of M-m is