Home
Class 8
MATHS
Which of the following expressions are e...

Which of the following expressions are exactly equal in value ?
1. `( 3x - y) ^(2) - ( 5x ^(2) - 2xy)`
2. `(2x - y ) ^(2)`
3. `(2x pm y ) ^(2) - 2 xy`
4. `(2x +3y ) ^(2) - 2 xy`

A

1 and 2 only

B

1, 2 and 3 only

C

2 and 4 only

D

1,2 and 4 only

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given expressions are exactly equal in value, we will simplify each expression step by step. ### Step 1: Simplify the first expression **Expression 1:** \((3x - y)^2 - (5x^2 - 2xy)\) 1. Expand \((3x - y)^2\): \[ (3x - y)^2 = (3x)^2 - 2(3x)(y) + y^2 = 9x^2 - 6xy + y^2 \] 2. Substitute back into the expression: \[ 9x^2 - 6xy + y^2 - (5x^2 - 2xy) \] 3. Distribute the negative sign: \[ 9x^2 - 6xy + y^2 - 5x^2 + 2xy \] 4. Combine like terms: \[ (9x^2 - 5x^2) + (-6xy + 2xy) + y^2 = 4x^2 - 4xy + y^2 \] So, the first expression simplifies to: \[ 4x^2 - 4xy + y^2 \] ### Step 2: Simplify the second expression **Expression 2:** \((2x - y)^2\) 1. Expand \((2x - y)^2\): \[ (2x - y)^2 = (2x)^2 - 2(2x)(y) + y^2 = 4x^2 - 4xy + y^2 \] So, the second expression simplifies to: \[ 4x^2 - 4xy + y^2 \] ### Step 3: Simplify the third expression **Expression 3:** \((2x \pm y)^2 - 2xy\) 1. Consider both cases: \((2x + y)^2\) and \((2x - y)^2\). **Case 1:** \((2x + y)^2\) \[ (2x + y)^2 = 4x^2 + 4xy + y^2 \] Then: \[ 4x^2 + 4xy + y^2 - 2xy = 4x^2 + 2xy + y^2 \] **Case 2:** \((2x - y)^2\) \[ (2x - y)^2 = 4x^2 - 4xy + y^2 \] Then: \[ 4x^2 - 4xy + y^2 - 2xy = 4x^2 - 6xy + y^2 \] Thus, the third expression can yield two different results depending on the sign. ### Step 4: Simplify the fourth expression **Expression 4:** \((2x + 3y)^2 - 2xy\) 1. Expand \((2x + 3y)^2\): \[ (2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2 = 4x^2 + 12xy + 9y^2 \] 2. Substitute back into the expression: \[ 4x^2 + 12xy + 9y^2 - 2xy = 4x^2 + 10xy + 9y^2 \] ### Conclusion Now we compare the simplified expressions: 1. Expression 1: \(4x^2 - 4xy + y^2\) 2. Expression 2: \(4x^2 - 4xy + y^2\) 3. Expression 3: - Case 1: \(4x^2 + 2xy + y^2\) - Case 2: \(4x^2 - 6xy + y^2\) 4. Expression 4: \(4x^2 + 10xy + 9y^2\) From the simplifications, we see that: - Expression 1 and Expression 2 are equal: \(4x^2 - 4xy + y^2\). - Expression 3 and Expression 4 do not match either of the first two expressions. ### Final Answer The expressions that are exactly equal in value are **Expression 1 and Expression 2**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

Which of the following expressions are polynomials and which are not? 3x^(2)y^(2)-5xy^(3)+12y^(4)

Which of the following expressions are polynomials and which are not? 5x^(2)y^(1/2)-3xy^(3)+19x^(2)y^(3)

Knowledge Check

  • (x + y) (x ^(2) + y ^(2) - xy) (x ^(2 )+ y ^(2) + xy) (x - y) is equal to

    A
    `x ^(3) + y ^(3)`
    B
    `x ^(2) - y ^(3)`
    C
    `x ^(6) + y ^(6)`
    D
    `x ^(6) - y ^(6)`
  • The simplified value of (1- ( 2xy )/( x ^(2) + y ^(2))) div ((x ^(3) - y ^(3))/( x - y ) - 3 xy ) is

    A
    `(1)/( x ^(2) - y ^(2))`
    B
    `(1)/(x ^(2) + y ^(2))`
    C
    `(1)/(x -y)`
    D
    `(1)/( x + y)`
  • Similar Questions

    Explore conceptually related problems

    Add: 8x^(2) - 5xy - 3y^(2), 2xy - 6y^(2) + 3x^(2) and y^(2) + xy - 6x^(2)

    Add: 4x^(2) - 7xy + 4y^(2) - 3, 5 + 6y^(2) - 8xy + x^(2) and 6 - 2xy + 2x^(2) - 5y^(2)

    Simplify (3)/(2) xy ( 4x ^(2) y - 6 xy ^(2 ) - 8x ^(2) y ^(2))

    Add : 5x ^(2) - 3xy + 4y ^(2) - 9, 7y ^(2)+ 5xy - 2x ^(2) + 13

    Add the following expressions: x^3 - x^2y - xy^2 - y^3 and x^3-2x^2y + 3xy^2 + 4y

    Solve for (x - 1)^(2) and (y + 3)^(2) , 2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5) and 4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2) .