Home
Class 8
MATHS
Simplify the expression : [(x^3 + y^3)...

Simplify the expression :
`[(x^3 + y^3)/((x - y)^2 + 3xy)] div [((x + y)^2 - 3xy)/(x^3 - y^3)] xx (xy)/(x^2 - y^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{x^3 + y^3}{(x - y)^2 + 3xy} \div \frac{(x + y)^2 - 3xy}{x^3 - y^3} \cdot \frac{xy}{x^2 - y^2} \] we will follow these steps: ### Step 1: Simplify \(x^3 + y^3\) Using the identity for the sum of cubes, we have: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] ### Step 2: Simplify \((x - y)^2 + 3xy\) Expanding \((x - y)^2\): \[ (x - y)^2 = x^2 - 2xy + y^2 \] Thus, \[ (x - y)^2 + 3xy = x^2 - 2xy + y^2 + 3xy = x^2 + y^2 + xy \] ### Step 3: Simplify \((x + y)^2 - 3xy\) Using the expansion for \((x + y)^2\): \[ (x + y)^2 = x^2 + 2xy + y^2 \] So, \[ (x + y)^2 - 3xy = x^2 + 2xy + y^2 - 3xy = x^2 + y^2 - xy \] ### Step 4: Simplify \(x^3 - y^3\) Using the identity for the difference of cubes, we have: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] ### Step 5: Simplify \(x^2 - y^2\) Using the difference of squares, we get: \[ x^2 - y^2 = (x - y)(x + y) \] ### Step 6: Substitute back into the original expression Now substituting everything back into the original expression, we have: \[ \frac{(x + y)(x^2 - xy + y^2)}{x^2 + y^2 + xy} \div \frac{(x^2 + y^2 - xy)}{(x - y)(x^2 + xy + y^2)} \cdot \frac{xy}{(x - y)(x + y)} \] ### Step 7: Change division to multiplication Changing the division to multiplication by taking the reciprocal: \[ = \frac{(x + y)(x^2 - xy + y^2)}{x^2 + y^2 + xy} \cdot \frac{(x - y)(x^2 + xy + y^2)}{(x^2 + y^2 - xy)} \cdot \frac{xy}{(x - y)(x + y)} \] ### Step 8: Cancel out common terms Now we can cancel out the common terms: - \(x + y\) in the numerator and denominator - \(x - y\) in the numerator and denominator This simplifies to: \[ = \frac{(x^2 - xy + y^2) \cdot xy}{x^2 + y^2 + xy} \cdot \frac{(x^2 + xy + y^2)}{(x^2 + y^2 - xy)} \] ### Step 9: Final simplification After canceling and simplifying, we are left with: \[ = xy \] ### Final Answer: Thus, the simplified expression is: \[ \boxed{xy} \]
Promotional Banner

Topper's Solved these Questions

  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank |20 Videos
  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE (REVISION)

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos

Similar Questions

Explore conceptually related problems

If A=(x^3+y^3)/((x-y)^2+3xy), B=((x+y)^2-3xy)/(x^3-y^3), C=(xy)/(x^2-y^2) then (A-:B)xxC=

On simplification, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) is equal to : सरलीकरण के बाद, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) किसके बराबर होगा?

If P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) and R=((x+y)^2+(x-y)^2)/(x^2-y^2) , then (P div Q) xx R is equal to: यदि P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) तथा R=((x+y)^2+(x-y)^2)/(x^2-y^2) है, तो (P div Q) xx R का मान क्या होगा ?

Simplify the expression by combining the like terms: 7x^3 -3x^2y + xy^2 + x^2y - y^3

Add the following expressions: x^3 - x^2y - xy^2 - y^3 and x^3-2x^2y + 3xy^2 + 4y

Factoris the expression. x ^(2) y ^(2) + x ^(2) y ^(3) - xy ^(4) + xy

Perform the division: (x ^(3) y ^(3) + x ^(2) y ^(3) - xy ^(4) + xy)div xy

2x + y = (7xy) / (3), x + 3y = (11xy) / (3)