Home
Class 8
MATHS
The LCM of the polynomials x^3 +3x^2 +3x...

The LCM of the polynomials `x^3 +3x^2 +3x + 1, x^2 +2x+1` and `x^2 -1` is :

A

`(x - 1)(x+1)^3`

B

`(x^2 + 1)(x-1)^2`

C

`(x^2-1)(x - 1)^2`

D

`(x+1)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the LCM of the polynomials \(x^3 + 3x^2 + 3x + 1\), \(x^2 + 2x + 1\), and \(x^2 - 1\), we will follow these steps: ### Step 1: Factor each polynomial 1. **Factor \(x^3 + 3x^2 + 3x + 1\)**: - This polynomial can be recognized as a perfect cube. It can be factored using the formula for the expansion of \((a + b)^3\). - Here, \(a = x\) and \(b = 1\), so: \[ x^3 + 3x^2 + 3x + 1 = (x + 1)^3 \] 2. **Factor \(x^2 + 2x + 1\)**: - This is a perfect square trinomial. It can be factored as: \[ x^2 + 2x + 1 = (x + 1)^2 \] 3. **Factor \(x^2 - 1\)**: - This is a difference of squares and can be factored as: \[ x^2 - 1 = (x - 1)(x + 1) \] ### Step 2: List the unique factors and their highest powers Now we have the factorizations: - \(x^3 + 3x^2 + 3x + 1 = (x + 1)^3\) - \(x^2 + 2x + 1 = (x + 1)^2\) - \(x^2 - 1 = (x - 1)(x + 1)\) The unique factors are: - \(x + 1\) - \(x - 1\) Now we will take the highest power of each factor: - For \(x + 1\): The highest power is \(3\) (from \((x + 1)^3\)). - For \(x - 1\): The highest power is \(1\) (from \((x - 1)\)). ### Step 3: Write the LCM The LCM is obtained by multiplying the highest powers of all unique factors: \[ \text{LCM} = (x + 1)^3 (x - 1)^1 \] Thus, the LCM of the given polynomials is: \[ \text{LCM} = (x + 1)^3 (x - 1) \] ### Final Answer The LCM of the polynomials \(x^3 + 3x^2 + 3x + 1\), \(x^2 + 2x + 1\), and \(x^2 - 1\) is: \[ (x + 1)^3 (x - 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos
  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE (REVISION)

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos

Similar Questions

Explore conceptually related problems

What is the LCM of the polynomials x^3 + 3x^2 + 3x + 1, x^3 + 5x^2 + 5x + 4 and x^2 + 5x + 4 ?

The LCM of the polynomials (x^(2) + x - 2) (x^(2) + x -a) and (x^(2) + x -b) (x^(2) + 5x + a) " is " (x -1) (x +2) (x +3) , then find the values of a and b

What is the HCF of the polynomials x^6 - 3x^4 + 3x^2 - 1 and x^3 + 3x^2 + 3x + 1 ?

What is the common zero of the polynomial x^(3) + 1, x^(2) - 1 and x^(2) + 2x + 1?

The LCM of the polynomials 195 (x +3)^(2) (x -2) (x +1)^(2) and 221 (x +1)^(3) (x -2) (x +4) is ___

What is the HCF of the polynomials x^4-3x+2,x^3-3x^2+3x-1 and x^4-1

The HCF of the polynomials (2x - 1) (5x^(2) -ax + 3) and (x -3) (2x^(2) + x +b) " is " (2x -1) (x -3) Then the values of a and b respectively are _____

S CHAND IIT JEE FOUNDATION-HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS-Question Bank
  1. HCF of the polynomials 20x^2 y(x^2 - y^2) and 35xy^2 (x - y) is

    Text Solution

    |

  2. HCF of x^3 - 1 and x^4 + x^2 + 1 will be

    Text Solution

    |

  3. The HCF of the polynomials x^3 - 3x^2 + x - 3 and x^3 - x^2 - 9x + 9 i...

    Text Solution

    |

  4. The LCM of xy+yz+zx+y^2 and x^2+xy+yz+zx

    Text Solution

    |

  5. The LCM of x^2 - 10x + 16, x^2 - 9x + 14 and x^2 - 10x + 21 is

    Text Solution

    |

  6. The LCM of 6(x^2 + xy), 8(xy - y^2), 12 (x^2 -y^2) and 20(x + y)^2 is:

    Text Solution

    |

  7. The HCF of {x^4 - y^4) and (x^6 - y^6) is

    Text Solution

    |

  8. The LCM of the polynomials x^3 +3x^2 +3x + 1, x^2 +2x+1 and x^2 -1 is ...

    Text Solution

    |

  9. The product of two expression is x^3 + x^2 - 44x - 84. If the HCF of t...

    Text Solution

    |

  10. The HCF of x^4 -11x^2 +10, x^2 – 5x+4 and x^3 – 3x^2 + 3x-1 is

    Text Solution

    |

  11. The HCF of two polynomials 4x^2(x^2 – 3x+2) and 12x(x-2)(x^2 - 4) is 4...

    Text Solution

    |

  12. The rational expression (8x^3 - 125)/(4x^2 +10x+ 25) in its simplest f...

    Text Solution

    |

  13. sqrt(((x^2 + 3x + 2)(x^2 + 5x + 6))/(x^2 (x^2 + 4x+ 3))) is equal to :

    Text Solution

    |

  14. If A = (2x + 1)/(2x - 1) and B = (2x - 1)/(2x + 1) then A - B is equa...

    Text Solution

    |

  15. 1/(x + 1) - 1/(x - 1) - (x^2)/(x + 1) + (x^2)/(x -1), when simplified ...

    Text Solution

    |

  16. The product of the rational expressions (x^2 - y^2)/(x^2 + 2xy + y^2) ...

    Text Solution

    |

  17. ((2x + y)/(x + y) - 1) div (1 - y/(x + y)) is equal to :

    Text Solution

    |

  18. (x^3 + y^3 + z^3 - 3xyz)/(a^3 + b^3 + c^3 - 3abc) xx (a^2 + b^2 + c^2 ...

    Text Solution

    |

  19. What should be added to a/(a - b) + b/(a + b) to get 1?

    Text Solution

    |

  20. Simplify : [1/(1 + a) + (2a)/(1 - a^2)] xx ((a^2 + 4a - 5)/(a^2 + 10a ...

    Text Solution

    |