Home
Class 8
MATHS
(a + 1)/(a^2 + 5a) xx (a^2 - 25)/(a^2 - ...

`(a + 1)/(a^2 + 5a) xx (a^2 - 25)/(a^2 - a - 20) div (a^2 - a - 2)/(a^2 + 2a - 8)` when simplified is equal to :

A

`1`

B

`a `

C

`1/a`

D

`a^2`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((a + 1)/(a^2 + 5a) \times (a^2 - 25)/(a^2 - a - 20) \div (a^2 - a - 2)/(a^2 + 2a - 8)\), we will follow these steps: ### Step 1: Factor the polynomials 1. **Factor \(a^2 + 5a\)**: \[ a^2 + 5a = a(a + 5) \] 2. **Factor \(a^2 - 25\)** (difference of squares): \[ a^2 - 25 = (a + 5)(a - 5) \] 3. **Factor \(a^2 - a - 20\)**: \[ a^2 - a - 20 = (a - 5)(a + 4) \] 4. **Factor \(a^2 - a - 2\)**: \[ a^2 - a - 2 = (a - 2)(a + 1) \] 5. **Factor \(a^2 + 2a - 8\)**: \[ a^2 + 2a - 8 = (a + 4)(a - 2) \] ### Step 2: Rewrite the expression with the factors Now substituting the factors back into the expression: \[ \frac{a + 1}{a(a + 5)} \times \frac{(a + 5)(a - 5)}{(a - 5)(a + 4)} \div \frac{(a - 2)(a + 1)}{(a + 4)(a - 2)} \] ### Step 3: Change division to multiplication Change the division to multiplication by taking the reciprocal: \[ \frac{a + 1}{a(a + 5)} \times \frac{(a + 5)(a - 5)}{(a - 5)(a + 4)} \times \frac{(a + 4)(a - 2)}{(a - 2)(a + 1)} \] ### Step 4: Cancel common factors Now we can cancel the common factors: - \(a + 1\) cancels with \(a + 1\) - \(a + 5\) cancels with \(a + 5\) - \(a - 5\) cancels with \(a - 5\) - \(a - 2\) cancels with \(a - 2\) - \(a + 4\) cancels with \(a + 4\) After canceling, we are left with: \[ \frac{1}{a} \] ### Final Answer Thus, the simplified expression is: \[ \frac{1}{a} \] ---
Promotional Banner

Topper's Solved these Questions

  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank |20 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE (REVISION)

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos

Similar Questions

Explore conceptually related problems

Simplify : [1/(1 + a) + (2a)/(1 - a^2)] xx ((a^2 + 4a - 5)/(a^2 + 10a + 25))

Simplify: 1 div ( - (1)/(2) )

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

When ((81)/(16))^((-3)/(4)) xx {((9)/(25))^((5)/(2)) div ( (5)/(2))^(-3)} is simplified , we get .

3.5xx(80 div 2.5)=?

If x ne -1,2 and 5, then the simplified value of {(2(x^3-8))/(x^2-x-2)xx (x^2+2x+1)/(x^2-4x-5)} div (x^2+2x+4)/(3x-15) is equal to : यदि x ne -1,2 और 5 है, तो {(2(x^3-8))/(x^2-x-2)xx (x^2+2x+1)/(x^2-4x-5)} div (x^2+2x+4)/(3x-15) का सरलीकृत मान क्या होगा ?

3xx(60 div 2.5)=?